JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure
LEE, JUNSIK; KIM, SEUNGGON; SOHN, YOUNGJUN;
  PDF(new window)
 Abstract
This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from to and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.
 Keywords
Air-cooling;PEMFC;Natural convection;Nusselt number;Rayleigh number;UAV;
 Language
Korean
 Cited by
 References
1.
O. Gonzalez-Espasandin, J. T. Leo, and E. Navarro-Arevalo, "Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion", The Scientific World Journal, 2014, pp. 1-12.

2.
T. Kim, and S. Kwon, "Design and Development of a Fuel Cell-Powered Small Unmanned Aircraft", International Journal of Hydrogen Energy, Vol. 37, 2012, pp. 615-622. crossref(new window)

3.
M. Cha, M. Kim, Y. Sohn, and T. Yang, "Design, Control and Evaluation Methods of PEM Fuel Cell Unmanned Aerial Vehicle: A review", Trans. of the Korean Hydrogen and New Energy Society, Vol. 45, No. 4, 2014, pp. 405-418.

4.
S. Cho, M. Kim, Y. Sohn, and T. Yang, "Research trend and analysis of altitude and endurance for fuel cell unmanned aerial vehicles", Trans. of Korean Hydrogen and New Energy Society, Vol. 25, No. 4, 2014, pp. 397-404.

5.
D. Park, S. Kim, D. Kim, and T. Kim, "Performance Evaluation of Hydrogen Generator for Fuel Cell Unmanned Aircraft", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 7, 2011, 2011, pp. 627-633. crossref(new window)

6.
S. Kang, B. Kim, and H. Kim, "Experimental Study on the Characteristics of Heat Exchanger of 1 kW PEMFC System for UAV", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 60, 2011, pp. 819-826.

7.
Y. Jee, Y. Sohn, G. Park, C. Kim, Y. Choi, and S. Cho, "Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell" Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 3, 2012, pp. 250-255. crossref(new window)

8.
G. Romeo, F. Borello, G. Correa, and E. Cestino, "ENFICA-FC: Design of Transport Aircraft Powered by Fuel Cell & Flight Test of Zero Emission 2-seater Aircraft Powered by Fuel Cells Fueled by Hydrogen", International Journal of Hydrogen Energy, Vol. 38, 2013, pp. 469-479. crossref(new window)

9.
K. Bae, C. Yi, H. Jeong, and H. Chung, "A Study on Natural Convection in a Rectangular Enclosure with a Heating Source", Proceeding of The KSME Spring Conference B, 2000, pp. 296-303.

10.
Y. Ahn, H. Cho, and H. Yong, "A Finite Element Analysis of Conjugate Heat Transfer Inside a Cavity with a Heat Generating Conducting Body", Trans. of The Korean Society of Mechanical Engineers B, Vol. 33, No. 3, 2009, pp. 170-177. crossref(new window)

11.
J. Lee, and M. Ha, "Numerical Simulation of Natural Convection in a Horizontal Enclosure with a Heat-generating Conducting Body", International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 2684-2702. crossref(new window)