JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils
Shagol, Charlotte C.; Chauhan, Puneet S.; Kim, Ki-Yoon; Lee, Sun-Mi; Chung, Jong-Bae; Park, Kee-Woong; Sa, Tong-Min;
  PDF(new window)
 Abstract
Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.
 Keywords
Arsenic pollution;Phytoremediation;Rhizosphere bacteria;Plant-microbe interaction;
 Language
English
 Cited by
1.
Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach, Environmental Science and Pollution Research, 2017  crossref(new windwow)
 References
1.
Antoun, H. and J. Kloepper. 2001. Plant growth promoting rhizobacteria (PGPR). p. 1477-1480. In S. Brenner and J. Miller (ed.) Encyclopedia of Genetics. Academic Press.

2.
ATSDR. 2005. CERCLA Priority List of Hazardous Substances. http://www.atsdr.cdc. gov/cercla/05list.html

3.
Atlas, R.M. and J. Philip. 2005. Bioremediation: Applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, D.C., USA.

4.
Baker, A.J. 1981. Accumulators and excluders strategies in the response of plants to heavy metals. J. Plant Nutr. 3:643-654. crossref(new window)

5.
Barka E.A, J. Nowak, and C. Clément. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72:7246-52. crossref(new window)

6.
Bech, J., C. Poschenrieder, M. Llugany, J. Barcelo, P. Tume, F.J. Tobias, J.L. Barranzuela, and E.R. Vasquez. 1997. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 203:83-91. crossref(new window)

7.
Bhattacharya, P., A.B. Mukherjee, and G. Jacks. 2002. Metal contamination at a wood preservation site: characterization and experimental studies on remediation. Sci. Total Environ. 290:168-180.

8.
Bhumbla, D.K. and R.F Keefer. 1994. Arsenic mobilization and bioavailability in soils. p. 51-82. In J.O. Nriagu (ed.) Arsenic in the environment. Part I. Cycling and characterization. John Willey & Sons, Inc., New York, USA.

9.
Butcher, D.J. 2009. Phytoremediation of arsenic: Fundamental studies, practical applications, and future prospects. Appl. Spectrosc. Rev. 44:534-551. crossref(new window)

10.
Cai, Y. and L.Q. Ma. 2003. Metal tolerance, accumulation and detoxification in plants with emphasis on arsenic in terrestrial plants. p. 95-114. In Y. Cai and O. Braids (ed.) Biochemistry of environmentally important trace elements. Oxford University Press, London, UK.

11.
Cavalca, L., A. Corsini, S. Bachate, and V. Andreoni. 2010. Role of PGP arsenic-resistant bacteria in As mobilization and translocation in Helianthus annuus L. In Proceedings of the 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.

12.
Cavalca, L., R. Zanchi, A. Corsini, M. Colombo, C. Romagnoli, E. Canzi, and V. Andreoni. 2010. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst. Appl. Microbiol. 33:154-164. crossref(new window)

13.
Chopra, B.K., S. Bhat, I.P Mikheenko, Z. Hu, Y. Yang, X. Luo, H. Chen, L. van Zwieten, R. McC. Lilley, and R. Zhang. 2007. The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci. Total Environ. 378:331-342. crossref(new window)

14.
Compant S., B. Reiter, A. Sessitsch, J. Nowak, C. Clement, and E.A. Barka. 2005. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685-93. crossref(new window)

15.
De Koe, T. 1994. Arsenic resistance in submediterranean Agrostis species. PhD Thesis, Vrije Universiteit, Amsterdam, The Netherlands.

16.
Dhankher, O.P., Y. Li, B.P. Rosen, J. Shi, D. Salt, J. Senecoff, N.A. Shasti, and R.B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nature Biotechnol. 20:1140-1145. crossref(new window)

17.
Dimpka, C.O., A. Svatos, P. Dabrowska, A. Schmidt, W. Boland, and E. Kothe. 2008. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19-25. crossref(new window)

18.
Fitz, W.J. and W.W. Wenzel. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99:259-278. crossref(new window)

19.
Francesconi, K., P. Visoottiviseth, and W. Sridokchan. 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 284:27-35. crossref(new window)

20.
Gerhardt, K.E., B.M. Greenberg, and B.R. Glick. 2006. The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt. Current Trends in Microbiology 2:61-73.

21.
Glick, B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28:367-374. crossref(new window)

22.
Jonnalagadda, S.B. and G. Nenzou. 1997. Studies on arsenic rich mine dumps: II. The element uptake by vegetation. J. Environ. Sci. Health, Part A. 32:455-64.

23.
Kavamura, V.N. and E. Esposito. 2010. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 28:61-69. crossref(new window)

24.
Kidd, P., J. Barcelo, M.P. Bernal, F. Navari-Izzo, C. Poschenrieder, S. Shilev, R. Clemente, and C. Monterroso. 2009. Trace element behaviour at the root-soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67:243-259. crossref(new window)

25.
Kim, J.J. 1989. Soil Pollution. p. 169-214. In K. Han et al. (ed.). Agricultural Environmental Chemistry, Dong-Hwa Technol. Pub. Co. Seoul, Korea.

26.
Kim, B.Y. 1993. Soil Pollution and Improvement Countermeasure. In Soil Management for Sustainable Agric. Kor. Soc. Soil Fert., Suwon, Korea. p. 68-98.

27.
King, D.J. A.I Doronila, C. Feenstra, A.J.M Baker, and I.E Woodrow. 2008. Phytostabilization of arsenical gold mine tailings using for Eucalyptus species: Growth, arsenic uptake and availability after five years. Sci. Total Environ. 406:35-42. crossref(new window)

28.
Luo, C.L., Z.G. Shen, and X.D. Li. 2008. Plant uptake and leaching of metals during the hot EDDS-enhanced phytoextraction process. Int. J. Phytorem. 9:181-196.

29.
Ma, L.Q., K.M. Komar, C. Tu, W.H. Zhang, Y. Cai, and E.D. Kennelly. 2001. A fern that hyperaccumulates. Nature 409:579. crossref(new window)

30.
Ma, Y., M.N.V. Prasad, M. Rajkumar, and H. Freitas. 2011. Plant growth promoting rhizobacteria and endophyte accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29:248-258. crossref(new window)

31.
Mandal, B.K. and K.T. Suzuki. 2002. Arsenic round the world: a review. Talanta 58:201-235. crossref(new window)

32.
Mandal, S.M., B. Pati, R. Das, K. Amit, and K. A. Ghosh. 2008. Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from root nodules of Vigna mungo (L.) Hepper grown in arsenic-contaminated field. J. Gen. Appl. Microbiol. 54:93-99. crossref(new window)

33.
Meagher, R.B. and A.C. Heaton. 2005. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J. Ind. Microbiol. Biotechnol. 32:502-13. crossref(new window)

34.
Meharg, A.A. and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol. 154:29-43. crossref(new window)

35.
Merkle, S. 2005. Engineering forest trees with heavy metal resistance genes for phytoremediation. p. 117-120. In Agricultural Biotechnology: Beyond Food and Energy to Health and Environment. National Agricultural Biotechnology Council, New York, USA.

36.
Nie, L., S. Shah, A. Rashid, G.I. Burd, D.G. Dixon, and B. Glick. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol. Biochem. 40:355-361. crossref(new window)

37.
Nordstrom, D.K. 2002. Worldwide occurrences of arsenic in ground water. Science 296:2143-2145. crossref(new window)

38.
Nriagu, J.O. and J.M Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134-139. crossref(new window)

39.
Nriagu, J.O. 1989. A global assessment of natural sources of atmospheric trace metals. Nature (London) 338:47-49. crossref(new window)

40.
Nriagu, J.O. 2002. Arsenic poisoning through the ages. p. 1-50. In W.T. Frankenberger (ed.) Environmental chemistry of arsenic. Marcel Dekker, New York, USA.

41.
Nriagu, J.O., P. Bhattacharya, A.B. Mukherjee, J. Bundschuh, R. Zevenhoven, and R.H. Loppert. 2007. Arsenic in soil and groundwater: an overview. p. 3-60. In P. Bhattacharya et al. (ed.) Arsenic in soil and groundwater environment. Trace Metals and Other Contaminants in the Environment, Vol. 9. Elsevier, New York, USA.

42.
O'Neill, P. 1995. Arsenic. p. 105-121. In B.J. Alloway (ed.) Heavy metals in soils. Blackie Academic and Professional, London, UK

43.
Pacyna, J.M. and E.G. Pacyna. 2001. An assessment of global and regional emissions of trace metals in the atmosphere from anthropogenic sources world. Environ. Rev. 9:269-298. crossref(new window)

44.
Panda, S.K., R.K. Upadhyay, and S. Nath. 2010. Arsenic stress in plants. J. Agron. Crop Sci. 196:161-174 crossref(new window)

45.
Pierzynski, G.M., J.T. Sims, and G.F. Vance. 2005. Soils and environmental quality. CRC Press, Boca Raton, FL, USA.

46.
Pillay, V.K. and J. Nowak. 1997. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can. J. Microbiol. 43:354-61. crossref(new window)

47.
Porter, E.K. and P.J. Peterson. 1975. Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Total Environ. 4:365-371. crossref(new window)

48.
Pulford, I.D. and C. Watson. 2003. Phytoremediation of heavy metal-contaminated land by trees - A review. Environ. Int. 29:529-540. crossref(new window)

49.
Rajkumar, M., M.N. Vara Prasad, H. Freitas, and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit. Rev. Biotechnol. 29:120-130. crossref(new window)

50.
Rajkumar, M., N. Ae, M.N. Vara Prasad, and H. Freitas. 2010. Potential of siderophore-producing bacteria for improving heavy metal extraction. Trends Biotechnol. 28:142-149. crossref(new window)

51.
Reed, M. and B. Glick. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria in either copper and polyaromatic hydrocarbons. Can. J. Microbiol. 51:1061-1069. crossref(new window)

52.
Reichman, S.M. 2007. The potential of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol. Biochem. 39:2587-2593. crossref(new window)

53.
Rutherford, D.W., A.J. Bednar, J.R. Garbarino, R. Needham, K.W. Staver, and R.L. Wershaw. 2003. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Environ. Sci. Technol. 37:1515-1520. crossref(new window)

54.
Ryan R.P., K. Germaine, A. Franks, D.J. Ryan, and D.N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1-9. crossref(new window)

55.
Safronova, V., V. Stepanok, G. Engqvist, Y. Alekseyev, and A. Belimov. 2006. Root associated bacteria containing 1- aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils. 42:267-272. crossref(new window)

56.
Saleem, M., M. Arshad, S. Hussain, and A. Bhatti. 2007. Perspective on plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. 34:635-648. crossref(new window)

57.
Salt, D.E., M. Blaylock, N.P.B.A. Kumar, V. Duschenkov, B.D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13:468-474. crossref(new window)

58.
Schulz, B. and C. Boyle. 2006. What are endophytes? p. 1-13. In Schulz B. et al. (ed.) Microbial Root Endophytes. Springer-Verlag, Berlin.

59.
Sinha, S. and S.K. Mukherjee. 2008. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56:55-60. crossref(new window)

60.
Sizova, O.I., V.V. Kochetkov, and A.M. Boronin. 2006. The arsenic-phytoremediation potential of genetically modified Pseudomonas spp. In J.L. Morel et al. (ed.) Phytoremediation of metal-contaminated soils. Vol. 68. NATO Series. Springer, The Netherlands.

61.
Smith, S.E., H.M. Christophersen, S. Pope, and F.A. Smith. 2010. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1-21. crossref(new window)

62.
Treeby, M., H. Marschner, and V. Romheld. 1989. Mobilization of iron and other micronutrient cations from a calcareous soil by plant borne, microbial and synthetic chelators. Plant Soil 114:217-22. crossref(new window)

63.
US EPA. 1999. Phytoremediation resource guide. US Environmental Protection Agency. Washington DC, USA.

64.
Vazquez, S., R. Agha, A. Granado, M.J. Sarro, E. Esteban, J.M. Penalosa, and R.O. Carpena. 2006. Use of white lupine plant for stabilization of Cd and As polluted acid soil. Water Air Soil Pollut. 177:349-365. crossref(new window)

65.
Wang, S. and X. Zhao. 2009. On the potential of biological treatment for arsenic contaminated soils and groundwater. J. Environ. Manage. 90:2367-2376. crossref(new window)

66.
Wenzel, W.W., D.C. Adriano, D. Salt, and R. Smith. 1999. Phytoremediation: a plant-microbe-based remediation system. p. 457-508. In D.C. Adriano et al. (ed.) Agronomy Monograph 37, Madison, WI, USA.

67.
Xiong, J., L. Wu, S. Tu, J.D. Van Nostrand, Z. He, J. Zhou, and G. Wang. 2010. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L. Appl. Environ. Microbiol. 76:7277-7284. crossref(new window)

68.
Yang, J.E., Y.K. Kim, J.H. Kim, and Y.H. Park. 1999. Environmental impacts and management strategies of trace metals in soil and groundwater in The Republic of Korea. p. 270-289. In P.M. Huang and I.K. Iskandar (ed.) Soils and groundwater pollution and remediation Asia, Africa, and Oceania. CRC Press, New York, USA.

69.
Zhao, F.J., S.J. Dunham, and S.P. McGrath. 2002. Arsenic hyperaccumulation by different fern species. New Phytol. 156:27-31. crossref(new window)

70.
Zhuang, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth promoting rhizobacteria for bioremediation. Environ. Int. 33:406-413. crossref(new window)