JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Microbial Community of Orchard Soils in Gyeongnam Province
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Microbial Community of Orchard Soils in Gyeongnam Province
Lee, Young-Han; Lee, Seong-Tae;
  PDF(new window)
 Abstract
Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average concentrations in the orchard soils were of total FAMEs, of bacteria, of Gram-negative bacteria, of Gram-positive bacteria, of actinomycetes, of fungi, and of arbuscular mycorrhizal fungi. In addition, sandy loam soils had significantly low ratio of cy19:0 to 18: compared with that of loam soils (p<0.05), indicating that microbial stress decreased. The average soil microbial communities in the orchard soils were 28.1% of bacteria, 15.9% of fungi, 13.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.8% of arbuscular mycorrhizal fungi, and 1.4% of actinomycetes. The soil microbial community of Gram-negative bacteria in peach cultivating soils was significantly higher than that of pear cultivating soils (p<0.05).
 Keywords
Orchard;Microbial community;Soil texture;Fatty acid methyl ester (FAME);
 Language
Korean
 Cited by
1.
무경운 벼 유기농업이 토양 미생물 생태에 미치는 영향,이영한;안병구;곽연식;

한국토양비료학회지, 2011. vol.44. 5, pp.814-818 crossref(new window)
2.
시설딸기재배지 토양에서 염류농도가 미생물 생태에 미치는 영향,이영한;안병구;손연규;

한국토양비료학회지, 2011. vol.44. 5, pp.830-835 crossref(new window)
3.
경남지역 논 토양 토성에 따른 미생물 군집 변화,이영한;안병구;이성태;신민아;김은석;송원두;손연규;

한국토양비료학회지, 2011. vol.44. 6, pp.1176-1180 crossref(new window)
4.
경남지역 논 토양 지형과 미생물 군집의 관계,이영한;안병구;손연규;

한국토양비료학회지, 2011. vol.44. 6, pp.1158-1163 crossref(new window)
5.
경남지역 논 토양 유형에 따른 미생물 군집 변화,이영한;안병구;이성태;신민아;김은석;송원두;손연규;

한국토양비료학회지, 2011. vol.44. 6, pp.1164-1168 crossref(new window)
6.
경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향,안창환;임종희;김요환;정병권;김진원;김상달;

한국미생물생명공학회지, 2012. vol.40. 1, pp.30-38 crossref(new window)
7.
시설 하우스 토양에서 녹비작물 재배가 Biomass-C와 양분변화에 미치는 영향,이병진;윤태현;조우태;전현식;조영손;

한국유기농업학회지, 2013. vol.21. 4, pp.647-657 crossref(new window)
8.
Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province,;;;;;;;;;;

한국토양비료학회지, 2015. vol.48. 2, pp.81-86 crossref(new window)
9.
생강연작재배지에서 Pythium zingiberum 경감을 위한 녹비작물 재배효과,정유진;노일섭;김용권;강권규;

한국자원식물학회지, 2015. vol.28. 2, pp.271-278 crossref(new window)
10.
Bacillus amyloliquefaciens GR4-5 균주의 토양 내 정량 분석,김다연;김병용;안재형;원항연;김성일;김완규;송재경;

한국유기농업학회지, 2015. vol.23. 4, pp.847-858 crossref(new window)
11.
Effect of Biodegradable Mulch Film on Soil Microbial Community,;;;;;;;;

한국토양비료학회지, 2016. vol.49. 2, pp.125-131 crossref(new window)
12.
Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province,;;;;;;;;;

한국토양비료학회지, 2016. vol.49. 6, pp.783-788 crossref(new window)
1.
Effects of Electrical Conductivity on the Soil Microbial Community in a Controled Horticultural Land for Strawberry Cultivation, Korean Journal of Soil Science and Fertilizer, 2011, 44, 5, 830  crossref(new windwow)
2.
Impacts of Soil Texture on Microbial Community from Paddy Soils in Gyeongnam Province, Korean Journal of Soil Science and Fertilizer, 2011, 44, 6, 1176  crossref(new windwow)
3.
Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province, Korean Journal of Soil Science and Fertilizer, 2015, 48, 2, 81  crossref(new windwow)
4.
Impacts of Organic Farming System on the Soil Microbial Ecology in No-till Paddy, Korean Journal of Soil Science and Fertilizer, 2011, 44, 5, 814  crossref(new windwow)
5.
Impacts of Soil Type on Microbial Community from Paddy Soils in Gyeongnam Province, Korean Journal of Soil Science and Fertilizer, 2011, 44, 6, 1164  crossref(new windwow)
6.
Relationship of Topography and Microbial Community from Paddy Soils in Gyeongnam Province, Korean Journal of Soil Science and Fertilizer, 2011, 44, 6, 1158  crossref(new windwow)
7.
Effect of Biodegradable Mulch Film on Soil Microbial Community, Korean Journal of Soil Science and Fertilizer, 2016, 49, 2, 125  crossref(new windwow)
8.
Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province, Korean Journal of Soil Science and Fertilizer, 2016, 49, 6, 783  crossref(new windwow)
 References
1.
Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604. crossref(new window)

2.
Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. crossref(new window)

3.
Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38: 1583-1595. crossref(new window)

4.
Buyer, J.S. and L.E. Drinkwater. 1997. Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J. Microbiol. Meth. 30:3-11. crossref(new window)

5.
Fries, M.R., G.D. Hopkins, P.L. McCarty, L.J. Forney, and J.M. Tiedje. 1997. Microbial succession during a field evaluation of phenol and toluene as the primary substrates for trichloroethene cometabolism. Appl. Environ. Microbiol. 63:1515-1522.

6.
Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59: 3605-3617.

7.
Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.

8.
Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.

9.
Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. crossref(new window)

10.
Heo, J.Y., S.T. Lee, M.G. Kim, K.P. Hong, W.D. Song, C.W. Rho, J.S. Cho, and Y.H. Lee. 2010. Relationship between the incidence of bitter pit and the application level of crushed oyster shell in apple orchard. Korean J. Soil Sci. Fert. 43:637-643.

11.
Jung, Y.T., E.S. Yun, J.K. Kim, I.S. Son, J.D. So, and Y.K. Jo. 1993. Establishment of soil suitability classification system for sweet persimmon in Yeongnam area. RDA J. Agric Sci. Soil Fert. 35:245-251.

12.
Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.

13.
Kim E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice growing stage. Korean J. Soil Sci. Fert. 44:221-227. crossref(new window)

14.
Lee, S.H., W.S. Kim, K.Y. Kim, T.H. Kim, H. Whangbo, W.J. Jung, and S.J. Chung. 2003. Effect of chitin compost incorporated with chitinolytic bacteria and rice bran on chemical properties and microbial community in pearorchard soil. J. Kor. Soc. Hort. Sci. 44:201-206.

15.
Lee, Y.H. and S.K. Ha. 2011. Impacts of chemical properties on microbial population from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:242-247. crossref(new window)

16.
Lee, Y.H., S.T. Choi, S.T. Lee, K.P. Hong, W.D. Song, J.H. Lee, and J.S. Cho. 2010a. Seasonal change in the soil chemical properties from sweet persimmon orchard in Gyeongnam Province. Korean J. Soil Sci. Fert. 43: 572-577.

17.
Lee, Y.H. and Y.S. Zhang. 2011. Response of microbe to chemical properties from orchard soil in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:236-241. crossref(new window)

18.
Lee, Y.S., J.H. Kang, K.J. Choi, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011. Response of soil microbial communities to different cultivation systems in controlled horticultural land. Korean J. Soil Sci. Fert. 44:118-126. crossref(new window)

19.
Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.

20.
Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Biol. 46:312-318. crossref(new window)

21.
Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. crossref(new window)

22.
RDA (Rural development administration). 1983. Soil in Korea. RDA, Suwon, Korea.

23.
SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.

24.
Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. crossref(new window)

25.
Suh, J.S. 1998. Soil microbiology. Korean J. Soil Sci. Fert. 31(S):76-89.

26.
Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. crossref(new window)