JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Psychrotolerance Mechanisms in Cold-Adapted Bacteria and their Perspectives as Plant Growth-Promoting Bacteria in Temperate Agriculture
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Psychrotolerance Mechanisms in Cold-Adapted Bacteria and their Perspectives as Plant Growth-Promoting Bacteria in Temperate Agriculture
Subramanian, Parthiban; Joe, Manoharan Melvin; Yim, Woo-Jong; Hong, Bo-Hui; Tipayno, Sherlyn C.; Saravanan, Venkatakrishnan Sivaraj; Yoo, Jae-Hong; Chung, Jong-Bae; Sultana, Tahera; Sa, Tong-Min;
  PDF(new window)
 Abstract
Cold-adapted bacteria survive in extremely cold temperature conditions and exhibit various mechanisms of adaptation to sustain their regular metabolic functions. These adaptations include several physiological and metabolic changes that assist growth in a myriad of ways. Successfully sensing of the drop in temperature in these bacteria is followed by responses which include changes in the outer cell membrane to changes in the central nucleoid of the cell. Their survival is facilitated through many ways such as synthesis of cryoprotectants, cold acclimation proteins, cold shock proteins, RNA degradosomes, Antifreeze proteins and ice nucleators. Agricultural productivity in cereals and legumes under low temperature is influenced by several cold adopted bacteria including Pseudomonas, Acinetobacter, Burkholderia, Exiguobacterium, Pantoea, Rahnella, Rhodococcus and Serratia. They use plant growth promotion mechanisms including production of IAA, HCN, and ACC deaminase, phosphate solublization and biocontrol against plant pathogens such as Alternaria, Fusarium, Sclerotium, Rhizoctonia and Pythium.
 Keywords
Psychrotrophs;Psychrophiles;Cold-adaptation Mechanisms;Plant growth-promoting bacteria;
 Language
English
 Cited by
1.
Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize, Chemical and Biological Technologies in Agriculture, 2016, 3, 1  crossref(new windwow)
2.
Draft genome of Kocuria polaris CMS 76orT isolated from cyanobacterial mats, McMurdo Dry Valley, Antarctica: an insight into CspA family of proteins from Kocuria polaris CMS 76orT, Archives of Microbiology, 2015, 197, 8, 1019  crossref(new windwow)
 References
1.
Appleby, J.L., J.S. Parkinson, and R.B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less travelled. Cell 86:845-848. crossref(new window)

2.
Araki, T. 1992. An analysis of the effect of changes in growth temperature on proteolysis in vivo in the psychrophilic bacterium Vibrio sp. strain ANT-300. J. Gen. Microbiol. 138: 2075-2082. crossref(new window)

3.
Barka, E.A., J. Nowak, and C. Clement. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phyto firmans strain PsJN. Appl. Environ. Microbiol. 72:7246-7252. crossref(new window)

4.
Beck, E.H., R. Heim, and J. Hansen. 2004. Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29:449-459. crossref(new window)

5.
Bordeleau, L.M. and D. Prevost. 1994. Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115-125. crossref(new window)

6.
Boyer, J.S. 1982. Plant productivity and environment. Science 218:443-448. crossref(new window)

7.
Carpousis, A.J. 2002. The Escherichia coli RNA degradosome: structure, function and relationship to other ribonucleolytic multienyzme complexes. Biochem. Soc. Trans. 30:150-155.

8.
Chattopadhyay, M.K. 2000. Cold adaptation of Antarctic microorganisms - possible involvement of viable but nonculturable state. Polar Biol. 23:223-224. crossref(new window)

9.
Chattopadhyay, M.K. 2006. Mechanism of bacterial adaptation to low temperature. J. Biosci. 31:157-165. crossref(new window)

10.
Chattopadhyay, M.K. 2002. The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol. 10:311.

11.
Chattopadhyay, M.K. and M.V. Jagannadham. 2001. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 24: 386-388. crossref(new window)

12.
Cheng, Z., E. Park, and B.R. Glick. 2007. 1-Aminocyclopropane- 1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53:912-918. crossref(new window)

13.
Chu, J., X. Yao, and Z. Zhang. 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. 136:355-363. crossref(new window)

14.
Coker, J.A., P.P. Sheridan, J. Loveland-Curtze, K.R. Gutshall, A.J. Auman, and J.E. Brenchley. 2003. Biochemical characterization of a $\beta$-galatosidase with a low optimum obtained from an Antarctic Arthrobacter isolate. J. Bacteriol. 185:5473-5482. crossref(new window)

15.
D'Amico, S., P. Claverie, T. Collins, D. Georlette, E. Gratia, A. Hoyoux, M.A. Meuwis, G. Feller, and C. Gerday. 2002. Molecular basis of cold adaptation. Phil. Trans. R. Soc. Lond. B. 357:917-925. crossref(new window)

16.
Duman, J.G. and T.M. Olsen. 1993. Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322-328. crossref(new window)

17.
Egamberdiyeva, D. and G. Hoflich. 2003. Influence of growthpromoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35:973-978. crossref(new window)

18.
Ercolini, D., F. Russo, A. Nasi, P. Ferranti, and F. Villani. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 75:1990-2001. crossref(new window)

19.
Feller, G. and C. Gerday. 2003. Psychrophilic enzymes: hot topic in cold adaptation. Nat. Rev. Microbiol.1:200-208. crossref(new window)

20.
Fowler, S. and M.F. Thomashow. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675-1690. crossref(new window)

21.
Franks, F. 1985. Biophysics and biochemistry at low temperatures. Cambridge University Press, New York.

22.
Gianese, G., P. Argos, and S. Pascarella. 2001. Structural adaptation of enzymes to low temperatures. Protein Eng. 14:141-148. crossref(new window)

23.
Gilbert, J.A., P.L. Davies, and J. Laybourn-Parry. 2005. A hyperactive $Ca^{2+}$-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol. Lett. 245:67-72. crossref(new window)

24.
Gilbert, J.A., P.J. Hill, C.E.R. Dodd, and J. Laybourn-Parry. 2004. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiol. 150:171-180. crossref(new window)

25.
Goldstein, J., N.S. Pollitt, and M. Inouye. 1990. Major coldshock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA. 87:283-287. crossref(new window)

26.
Gow, J.A. and F.H.J. Mills. 1984. Pragmatic criteria to distinguish psychrophiles and psychrotrophs in ecological systems. Appl. Environ. Microbiol. 47:213-215.

27.
Graumann, P.L. and M.A. Marahiel. 1999. Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1:203-209.

28.
Gruszecki, W.I. and K. Strzałka. 2005. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 1740:108-115. crossref(new window)

29.
Gulati, A., P. Vyas, P. Rahi, and R.C. Kasana. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58:71-377.

30.
Guy, C.L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:187-223. crossref(new window)

31.
Hebraud, M. and P. Potier. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1:211-219.

32.
Heipieper, H.J., F. Meinhardt, and A. Segura. 2003. The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology, and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229:1-7. crossref(new window)

33.
Horn, G., W. Hofweber, W. Kremer, and H.R. Kalbitzer. 2007. Structure and function of bacterial cold shock proteins. Cell. Mol. Life. Sci. 64:1457-1470. crossref(new window)

34.
Huston, A.L., B. Methe, and J.W. Deming. 2004. Purification, characterization and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70: 3321-3328. crossref(new window)

35.
Jagannadham, M.V., M.K. Chattopadhayay, and S. Shivaji. 1996. The major carotenoid pigment of a psychrophilic Micrococcus roseus strain: fluorescence properties of the pigment and its binding to membranes. Biochem. Biophys. Res. Commun. 220: 724-728. crossref(new window)

36.
Jagannadham, M.V., M.K. Chattopadhayay, C. Subbalakshmi, M. Vairamani, K. Narayanan, C.M. Rao, and S. Shivaji. 2000. Carotenoids of an Antarctic psychrotolerant bacterium Sphingobacterium antarcticus and a mesophilic bacterium Sphingobacterium multivorum. Arch. Microbiol. 173:418-424. crossref(new window)

37.
Jagtap, P. and M.K. Ray. 1999. Studies on the cytoplasmic protein tyrosine kinase activity of the Antarctic psychrophilic bacterium Pseudomonas syringae. FEMS Microbiol. Lett. 173:379-388. crossref(new window)

38.
Johns, G.C. and G.N. Somero. 2004. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol. Biol. Evol. 21:314-320.

39.
Jones, P.G., R. Krah, S.R. Tafuri, and A.P. Wolve. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174:5798-5802.

40.
Kaneda, T. 1991. Iso- and anteiso- fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol. Rev. 55:288-302.

41.
Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287-291. crossref(new window)

42.
Katiyar, V. and R. Goel. 2004. Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul. 42:239-244. crossref(new window)

43.
Kaushik, R., A.K. Saxena, and K.V.B.R. Tilak. 2002. Can Azospirillum strains capable of growing at a sub-optimal temperature perform better in field-grown-wheat rhizosphere. Biol. Fertil. Soils 35:92-95. crossref(new window)

44.
Kawahara, H. 2002. The structures and functions of ice crystalcontrolling proteins from bacteria. J. Biosci. Bioeng. 94: 492-496. crossref(new window)

45.
Kawahara, H., N. Koda, M. Oshio, and H. Obata. 2000. A cold acclimation protein with refolding activity on frozen denatured enzymes. Biosci. Biotechnol. Biochem. 64:2668-2674. crossref(new window)

46.
Kiran, M.D., S. Annapoorni, I. Suzuki, N. Murata, and S. Shivaji. 2005. Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117-125. crossref(new window)

47.
Kiran, M.D., J.S.S. Prakash, S. Annapoorni, S. Dube, T. Kusano, H. Okuyama, N. Murata, and S. Shivaji. 2004. Psychrophilic Pseudomonas syringae required trans monounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401-410. crossref(new window)

48.
Knight, C.A., J. Hallett, and A.L. Devries. 1988. Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55-60. crossref(new window)

49.
Kozloff, L.M., M.A. Schofield, and M. Lute. 1983. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153:222-231.

50.
Lee, R.E., G.J. Warren, and L.V. Gusta. 1995. Biochemistry of bacterial ice nuclei. p. 63-83 In F. Ray and W.K. Paul (ed.) Biological ice nucleation and its application. APS Press, St Paul, Minnesota.

51.
Lindow, S.E., D.C. Arnym, and C.D. Upper. 1978. Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathol. 68:523-527. crossref(new window)

52.
Liu, S., J.E. Graham, L. Bigelow, P.D. Morse II, and B.J. Wilkinson. 2002. Identification of Listeria monocytogens genes expressed in response to growth at low temperature. Appl. Environ. Microbiol. 68:1697-1705. crossref(new window)

53.
Maki, L.R., E.L. Gaylan, M. Chang-Chein, and D.R. Caldwell. 1974. Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 28:456-459.

54.
Margesin, R., G. Neuner, and K.B. Storey. 2007. Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturewisenschaften 94:77-99. crossref(new window)

55.
Marx, J.G., S.D. Carpenter, and J.W. Deming. 2009. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 55:63-72. crossref(new window)

56.
Methe, B.A., K.E. Nelson, J.W. Deming, E. Melamud, X. Zhang, J. Moult, R. Madupu, W.C. Nelson, R.J. Dodson, L.M. Brinkac, S.C. Daugherty, A.S. Durkin, R.T. DeBoy, J.F. Kolonay, S.A. Sullivan, L. Zhou, T.M. Davidsen, M. Wu, A.L. Huston, M. Lewis, B. Weaver, J.F. Weidman, H. Khouri, T.R. Utterback, T.V. Feldblyum, and C.M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA. 102: 10913-10918. crossref(new window)

57.
Mishra, M. and R. Goel. 1999. Development of a cold resistant mutant of plant growth promoting Pseudomonas fluorescens and its functional characterization. J. Biotechnol. 75:71-75. crossref(new window)

58.
Mishra, P.K., S. Mishra, G. Selvakumar, S.C. Bisht, J.K. Bisht, S. Kundu, and H.S. Gupta. 2008. Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. Strain PGERs17 (MTCC 9000) isolated from north western Indian Himalayas. Ann. Microbiol. 58:561-568. crossref(new window)

59.
Mishra, P.K., S. Mishra, S.C. Bisht, G. Selvakumar, S. Kundu, J.K. Bisht, and H.S. Gupta. 2009. Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp, NARs9 (MTCC9002) from the Indian Himalayas. Biol. Res. 42:305-313.

60.
Mishra, P.K., P. Joshi, S.C. Bisht, J.K. Bisht, and G. Selvakumar. 2011a. Cold-tolerant agriculturally important microorganisms. p. 273-296. In D.K. Mageswari (ed.) Plant growth and health promoting bacteria. Microbiology Monographs V.18. Springer-Verlag, Berlin.

61.
Mishra, P.K., S.C. Bisht, P. Ruwari, G. Selvakumar, G.K. Joshi, J.K. Bisht, J.C. Bhatt, and H.S. Gupta. 2011b. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonas from NW Himalayas. Arch. Microbiol. 193:497-513. crossref(new window)

62.
Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci.11:15-19. crossref(new window)

63.
Morita, R.Y. 1975. Psycrophilic bacteria. Bacteriol. Rev. 39: 144-167.

64.
Moyer, C.L. and R.Y. Morita. 2007. Psychrophiles and psychrotrophs. John Wiley & Sons, Ltd. DOI: 10.1002/ 9780470015902.a0000402.pub2.

65.
Muryoi, N., M. Sato, S. Kaneko, H. Kawaahara, H. Obata, M.W.F. Yaish, M. Griffth, and B.R. Glick. 2004. Cloning and expression of afpA, a gene encoding an antifreeze protein from the Arctic plant growth promoting rhizobacterium Pseudomonas putida GR12-2. J. Bacteriol. 186:5661-5671. crossref(new window)

66.
Obata, H., N. Muryoi, H. Kawahara, K. Yamade, and J. Nishikawa. 1999. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties. Cryobiology 38:131-139. crossref(new window)

67.
Okuyama, H., N. Okajima, S. Sasaki, S. Higashi, and N. Murata. 1991. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim. Biophys. Acta. 1084:13-20. crossref(new window)

68.
Pandey, A., P. Trivedi, B. Kumar, and L.M.S. Palni. 2006. Characterization of a phosphate solublizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr. Microbiol. 53:102-107. crossref(new window)

69.
Piette, F., S. D'Amico, G. Mazzucchelli, A. Danchin, P. Leprince, and G. Feller. 2011. Life in the cold: a proteomic study of coldrepressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl. Environ. Microbiol. 77:3881-3883. crossref(new window)

70.
Polissi, A., W. De Laurentis, S. Zangrossi, F. Briani, V. Loghi, G. Pesole, and G. Deho. 2003. Changes in Escherichia coli transcriptome during acclimatization at low temperature. Microbiol. Res. 154:573-580. crossref(new window)

71.
Prevost, D., P. Drouin, and H. Antoun. 1999. The potential use of cold adapted rhizobia to improve nitrogen fixation in legumes cultivated in temperate regions. p. 161-176. In R. Margesin and F. Schinner (ed.) Biotechnological application of cold-adapted organisms. Springer, Berlin.

72.
Prevost, D., P. Drouin, S. Laberge, A. Bertrand, J. Cloutier, and G. Levesque. 2003. Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can. J. Bot. 81:1153-1161. crossref(new window)

73.
Purusharth, R.I., F. Klein, S. Sulthana, S. Jager, M.V. Jagannadham, E.E. Hackenberg, M.K. Ray, and G. Klug. 2005. Exoribonuclease R interacts with endoribonuclease E and RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J. Biol. Chem. 280:14572-14578. crossref(new window)

74.
Ray, M.K. 2006. Cold-stress response of low temperature adapted bacteria. p. 1-23. In A.S. Sreedhar and U.K. Srinivas (ed.) Stress response: A molecular biology approach. Research Signpost, India.

75.
Ray, M.K., G. Seshu Kumar, and S. Shivaji. 1994a. Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiol. 140:3217-3223. crossref(new window)

76.
Ray, M.K., T. Sitaramamma, S. Gandhi, and S. Shivaji. 1994b. Occurrence and expression of csp A, a cold shock gene in Antarctic psychrotrophic bacteria. FEMS Microbiol. Lett. 116:55-60. crossref(new window)

77.
Ray, M.K., G.S. Kumar, K. Janiyani, K. Kannan, P. Jagtap, M.K. Basu, and S. Shivaji. 1998. Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J. Biosci. 23:423-435. crossref(new window)

78.
Raymond, J.A. and A.L. DeVries. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA. 74:2589-2593. crossref(new window)

79.
Roberts, M.E. and W.E. Inniss. 1992. The synthesis of cold shock proteins and cold acclimation proteins in the psychrophilic bacterium Aquaspirillum articum. Curr. Microbiol. 25:275-278. crossref(new window)

80.
Robertson, G.P. and A.S. Grandy. 2005. Soil system management in temperate regions. P. 27-39. In N.T. Uphoff (ed.) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, Florida.

81.
Russell, N.J. 1997. Psychrophilic bacteria-molecular adaptations of membrane lipids. Comp. Biochem. Psysiol. 118A:489-493.

82.
Saleem, M., M. Arshad, S. Hussain, and A.S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34:635-648. crossref(new window)

83.
Sano, F., N. Asakawa, Y. Inouye, and M. Sakurai. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80-87. crossref(new window)

84.
Sardesai, N. and C.R. Babu. 2001. Poly-$\beta$-hydroxybutyrate metabolism is affected by changes in respiratory enzymatic activities due to cold stress in two psychrotrophic strains of Rhizobium. Curr. Microbiol. 42:53-58. crossref(new window)

85.
Selvakumar, G., S. Kundu, P. Joshi, S. Nazim, A.D. Gupta, and H.S. Gupta. 2010. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from Uttarakhand Himalayas. Indian J. Microbiol. 50:50-56. crossref(new window)

86.
Selvakumar, G., M. Mohan, S. Kundu, A.D. Gupta, S. Nazim, and H.S. Gupta. 2008b. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol. 46:171-175.

87.
Selvakumar, G., S. Kundu, P. Joshi, S. Nazim, A.D. Gupta, P.K. Mishra, and H.S. Gupta. 2008a. Characterization of a cold-tolerant plant growth -promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the north western Indian Himalayas. World J. Microbiol. Biotechnol. 24:955-960. crossref(new window)

88.
Selvakumar, G., P. Joshi, P. Suyal, P.K. Mishra, G.K. Joshi, J.K. Bisht, J.C. Bhatt, and H.S. Gupta. 2011. Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J. Microbiol. Biotechnol. 27:1129-1135. crossref(new window)

89.
Shivaji, S. and J.S.S. Prakash. 2010. How do bacteria sense and respond to low temperature? Arch. Microbiol. 192:85-95. crossref(new window)

90.
Shivaji, S., M.D. Kiran, and S. Chintalapati. 2007. Perception and transduction of low temperature in bacteria. p. 194- 207. In C. Gerday and V.N. Glansdor (ed.) Physiology and biochemistry of extremophiles. ASM Press, Washington.

91.
Solanke, A.U. and A.K. Sharma. 2008. Signal transduction during cold stress in plants. Physiol. Mol. Biol. Plants 14: 69-79. crossref(new window)

92.
Sun, X., M. Griffith, J.J. Pasternak, and B.R. Glick. 1995. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41:776-784. crossref(new window)

93.
Trivedi, P. and T. Sa. 2008. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solublization, organic acid production, and plant growth at lower temperatures. Curr. Microbiol.56:140-144. crossref(new window)

94.
Trivedi, P., A. Pandey, and T. Sa. 2007. Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. J. Basic Microb. 47:513-517. crossref(new window)

95.
Turner, M.A., F. Arellano, and L.M. Kozloff. 1991. Components of ice nucleation structures of bacteria. J. Bacteriol. 173: 6515-6527.

96.
Vyas, P., R. Joshi, K.C. Sharma, P. Rahi, A. Gulati, and A. Gulati. 2010. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J. Microbiol. Biotechnol. 20:1724-1734.

97.
Weber, M.H., W. Klein, L. Müller, U.M. Niess, and M.A. Marahiel. 2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39:1321-1329. crossref(new window)

98.
Xu, H., M. Griffith, C.L. Patten, and B.R. Glick. 1998. Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 44:64-73. crossref(new window)

99.
Yamashita, Y., N. Nakamura, K. Omiya, J. Nisikawa,, H. Kawahara, and H. Obata. 2002. Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci. Biotechnol. Biochem. 66:239-247. crossref(new window)