JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Calculation of Thermal Conductivity and Heat Capacity from Physical Data for Some Representative Soils of Korea
Aydin, Mehmet; Jung, Yeong-Sang; Lee, Hyun-Il; Kim, Kyung-Dae; Yang, Jae-E.;
  PDF(new window)
 Abstract
The thermal properties including volumetric heat capacity, thermal conductivity, thermal diffusivity, and diurnal and annual damping depths of 10 representative soil series of Korea were calculated using some measurable soil parameters based on the Taxonomical Classification of Korean Soils. The heat capacity of soils demonstrated a linear function of water content and ranged from 0.2 to for dry and saturated medium-textured soil, respectively. A small increase in water content of the dry soils caused a sharp increase in thermal conductivity. Upon further increases in water content, the conductivity increased ever more gradually and reached to a maximum value at saturation. The transition from low to high thermal conductivity occurred at low water content in the soils with coarse texture, and at high water content in the other textures. Thermal conductivity ranged between for dry (medium-textured) soil and for saturated (medium/coarse-textured) soil. The thermal diffusivity initially increased rapidly with small increases in water content of the soils, and then decreased upon further increases in the soil-water content. Even in an extreme soil with the highest diffusivity value (), the daily temperature variation did not penetrate below 70 cm soil depth and the yearly variation not below 13.4 m as four times of damping depths.
 Keywords
Thermal conductivity;Heat capacity;Damping depth;Korean soils;
 Language
English
 Cited by
 References
1.
Abu-Hamdeh, N. H., Reeder, R.C., 2000. Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J., 64(4), 1285-1290. crossref(new window)

2.
Akinyemi, O. D., Olowofela, J. A., Sauer, T. J., Fasunan, O. O., 2004. Spatio-temporal variability and fractal characterization of the thermal conductivity measured in situ in a natural clay soil. Journal of Geophysics and Engineering, 1(4), 252-258. crossref(new window)

3.
Aydin, M., 1993. Estimation of thermal properties of widely distributed red soils in the Harran Plain. 2nd International Meeting on Red Mediterranean Soils. University of Cukurova, Faculty of Agriculture Press, Adana-Turkey, 149-151.

4.
Aydin, M., Huwe, B., 1993. Test of a combined soil moisture/soil heat simulation model on a bare field soil in Southern Turkey. Z. Pflanzenern. Bodenk., 156, 441-446. crossref(new window)

5.
Balland V., Arp, P. A., 2005. Modeling soil thermal conductivities over a wide range of conditions. J. Environ. Eng. Sci., 4, 549-558. crossref(new window)

6.
Becker, B. R., Misra, A., Fricke, B. A., 1992. Development of correlations for soil thermal conductivity. International Communications in Heat and Mass Transfer, 19(1):59-68. crossref(new window)

7.
Bendjoudi, H., Cheviron, B., Guerin, R., Tabbagh, A., 2005. Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: test of the method with Voyons (Aube, France) experimental data. Hydrological Processes, 19, 3735-3745. crossref(new window)

8.
Campbell, G. S., 1985. Soil Physics with Basic: Transport Models for Soil-Plant Systems. Elsevier. Amsterdam, Oxford, 150 pp.

9.
Cass, A., Campbell, G.S., Jones, T.L., 1984. Enhancement of thermal water vapor diffusion in soil. Soil Sci. Soc. Am. J., 48, 25-32. crossref(new window)

10.
Dahiya, R., Ingwersen, J., Streck, T., 2007. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil & Tillage Research, 96(1-2), 52-63. crossref(new window)

11.
De Vries, D. A., 1966. Thermal properties of soils. In: Physics of Plant Environment (2nd ed., edited by W.R. van Wijk). North-Holland Publishing Company, Amsterdam, 210-235.

12.
Ekwue, E. I., Stone, R. J., Bhagwat, D., 2006. Thermal conductivity of some compacted Trinidadian soils as affected by peat content. Biosystems Engineering, 94(3), 461-469. crossref(new window)

13.
Guo, G., Zhang, H., Araya, K, Jia, H., Ohomiya, K., Matsuda, J., 2007. Improvement of salt-affected soils, part 4: Heat transfer coefficient and thermal conductivity of salt-affected soils. Biosystems Engineering, 96 (4), 593-603. crossref(new window)

14.
Hillel, D., 1998. Environmental Soil Physics. Academic Press. San Diego, London, 771 pp.

15.
Huwe, B., van der Ploeg, R. R., 1990. Modelle zur Simulation des Stickstoffhaushaltes von Standorten mit unterschiedlicher landwirtschaftlicher Nutzung. Eigenverlag des Instituts fur Wasserbau der Universitaet Stuttgart, 213 pp.

16.
Ju, ZQ., Ren, TS., Hu, CS., 2011. Soil thermal conductivity as influenced by aggregation at intermediate water contents. Soil Sci. Soc. Am. J., 75(1), 26-29. crossref(new window)

17.
Kim, S.O., Suh, M.S., Kwak, C. H., 2005. Climatological characteristic in the variation of soil temperature in Korea. Journal of Korean Earth Science Society, 26(1):93-105.

18.
Koo, M. H., Kim, Y. J., Suh, M. C., Suh, M. S., 2003. Estimating thermal diffusivity of soils in Korea using temperature time series data. Journal of the Geological Society of Korea, 39(3): 301-317.

19.
Leong, W. H. Tarnawski, V. R., Gori, F., Buchan, G. D., Sundberg, J., 2005. Inter-particle contact heat transfer model: an extension to soils at elevated temperatures. International Journal of Energy Research, 29(2), 131-144. crossref(new window)

20.
Liu, H., Wang, B., Fu, C., 2008. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China. Advances in Atmospheric Sciences, 25(5), 757-764. crossref(new window)

21.
Logsdon, S. D., Green, T. R., Bonta, J. V., Seyfried, M, S., Evett, S. R., 2010. Comparison of electrical and thermal conductivities for soils from five states. Soil science, 175(12), 573-578. crossref(new window)

22.
Lu, S., Ren, T., Gong, Y., Horton, R., 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J., 71(1), 8-14. crossref(new window)

23.
Lu, S., Ren, T. Yu, Z.., Horton, R., 2011. A method to estimate the water vapour enhancement factor in soil. European Journal of Soil Science, 62, 498-504. crossref(new window)

24.
Markle, J. M., Schincariol, R. A., Sass, J. H., Molson, J. W., 2006. Characterizing the two-dimentional thermal conductivity distribution in a sand and gravel aquifer. Soil Sci. Soc. Am. J., 70, 1281-1294. crossref(new window)

25.
Mochizuki, H,, Mizoguchi, M., Miyazaki, T., 2008. Effects of NaCl concentration on the thermal conductivity of sand and glass beads with moisture contents at levels below field capacity. Soil Science and Plant Nutrition, 54(6), 829-838. crossref(new window)

26.
NAAS, 1999. Taxonomical Classification of Korean Soils. National Academy of Agricultural Sciences.

27.
O'Donnell, J. A., Romanovsky, V. E., Harden, J. W., McGuire, A. D., 2009. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska. Soil Science, 174(12), 646-651. crossref(new window)

28.
Sakaguchi, I., Momose, T., Kasubuchi, T., 2007. Decrease in thermal conductivity with increasing temperature in nearly dry sandy soil. European Journal of Soil Science, 58(1), 92-97. crossref(new window)

29.
Scott, H. D., 2000. Soil Physics: Agricultural and Environmental Applications. Iowa State University Press, 425 pp.

30.
Song, K. C., Jung, Y. S., Kim, B. C., Ahn, Y. S., Um, K. T., 1992. Physical properties and apparent thermal diffusivity of the soils where soil temperature was measured regularly. J. Korean Soc. Soil Sci. Fert., 25(3), 220-230.

31.
Tarnawski, V. R., Momose, T., Leong, W. H., 2009. Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique 59(4), 331-338. crossref(new window)

32.
Usowicz, B., Lipiec, J., Ferrero, A., 2006. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. International Journal of Heat and Mass Transfer, 49(25-26), 5010-5017. crossref(new window)

33.
Wang, K., Wang, P., Liu, J., Sparrow, M., Haginoya, S., Zhou, X., 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the Western Tibetan Plateau. Boundary-Layer Meteorology, 116:117-129. crossref(new window)

34.
Yang, K., Koike, T., 2005. Comments on "estimating soil water contents from soil temperature measurements by using an adaptive Kalman filter". Journal of Applied Meteorology, 44, 546-550. crossref(new window)

35.
Yesilsoy, M. S., Aydin, M., 1991. Soil Physics (in Turkish). University of Cukurova, Faculty of Agriculture, Text-Book No:124, 228 pp.

36.
Yun, T. S., Santamarina, J. C., 2008. Fundamental study of thermal conduction in dry soils. Granular Matter, 10(3), 197-207. crossref(new window)

37.
Zhang, Y. S., Sonn, Y. K., Jung, S. J., Lee, G. J., Kim, M. S., Kim, S. K., Lee, J. Y., Pyun, I. H., 2006. Mineral composition of the soils derived from residuum and collovium. Korean J. Soil Sci. Fert., 39(5):245-252.