JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Assessment of Plant Growth Promoting Activities of Phosphorus Solubilizing Bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Assessment of Plant Growth Promoting Activities of Phosphorus Solubilizing Bacteria
Walpola, Buddhi Charana; Song, June-Seob; Yoon, Min-Ho;
  PDF(new window)
 Abstract
Plant growth promoting traits like production of indoleacetic acid (IAA), ammonia, hydrogen cyanide (HCN), siderophore, and like the enzyme activities of catalase, ACC deaminase, cellulase, chitinase and protease were assayed in vitro for twenty one phosphorus solubilizing bacteria isolated from soil isolates. Except SPP-5 and SPP-15 strains, all the other isolated strains produced IAA in various amounts of 10 to . All strains showed positive response for ammonia production and ACC deaminase activity implying that they are capable of growing in a N-free basal medium. Catalase activity was found to be superior in SPP-2, SPP-7, SPP-12 and SPP-17 compared to the other strains tested. HCN production was detected by 15 strains and among them SPP-9, SPP-15, SAph-11, and SAph-24 were found to be strong HCN producers. Except the isolates SPP-10, SPP-12, SPP-13 and SPP-14, all the other isolates produced more than 80% siderophore units. None of the strains showed cellulose and chitinase activity. SAph-8, SAPh-11, SAPh-24 and SPP-15 strains showed 35.84, 50.33, 56.64 and 34.78 U/ml protease activities, respectively. SPP-1, SPP-2, SPP-3, SPP-11, SPP-17, SPP-18, SAph-11 and SAph-24 strains showed positive response for all the tested plant growth promotion traits except cell wall degrading enzyme activities. According to the results, all the tested phosphorus solubilizing isolates could exhibit more than three or four plant growth promoting traits, which may promote plant growth directly or indirectly or synergistically. Therefore, these phosphorus solubilizing strains could be employed as bio-inoculants for agriculture soils.
 Keywords
Phosphorus solubilization;plant growth promoting activities;bio-inoculants;
 Language
English
 Cited by
 References
1.
Ahmad, F., I. Ahmad, and M. S. Khan. 2008. Screening of free living rhizobacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:173-181. crossref(new window)

2.
Alexander, D. B., and D. A. Zuberer. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12:39-45. crossref(new window)

3.
Banerjee, S., R. Palit, C. Sengupta, and D. Standing. 2010. Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aus. J. Crop Sci. 4:378-383.

4.
Bultreys, A., I. Gheyson, H. Maraite, and E. De-Hoffman. 2001. Characterization of fluorescent and non fluorescent peptide siderophores produced by Pseudomonas syringe strains and their potential use in strain identification. App. Environ. Microbiol. 67:1718-1727. crossref(new window)

5.
Cappucino, J. C., and N. Sherman. 1992. Microbiolgy: A laboratory manual. Benjamin/Cummings Publishing Company, New York, pp 125-179.

6.
Chaiharn, M. and S. Lumyong. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Nothern Thailand. W. J. Microbiol. Biotechnol. 25:305-314. crossref(new window)

7.
Chen, Z., S. Ma, and L. L. Liu. 2008. Studies on phosphorus solubilizing activity of a strain of phospho bacteria isolated from chestnut type soil in China. Biores. Technol. 99:6702-6707. crossref(new window)

8.
Cupp-Enyard, C. 2008. Sigmas's non-specific protease activity assay-Casein as a substrate. J. Vis. Exp. (19), e899, DOI:10.3791/899.

9.
Dey, R., K. K. Pal, D. M. Bhatt, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growthpromoting rhizobacteria. Microbiol. Res. 159:371-394. crossref(new window)

10.
Dobbelaere S., A. Croonenborghs, A. Thys, D. Ptacek, Y. Okon, and J. Vanderleyden. 2002. Effects of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol. Fertil. Soils. 36:284-297. crossref(new window)

11.
Donate-Correa, J., M. Leon-Barrios and R. Perez-Galdona, 2005. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil, 266:261-272. crossref(new window)

12.
Dworkin, M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75:592-601.

13.
Egamberdiyeva, D. 2005. Plant growth promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J. Plant Nutr. Soil Sci. 168:94-99. crossref(new window)

14.
Farah, A., A. Iqbal, M. S. Khan. 2006. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activity. Microbiol. Res. 63:11-19.

15.
Folasade, M. O. and O. A. Joshua. 2008. Some properties of extracellular protease from Bacillus licheniformis Lbb1-11 isolated from 'iru', A traditionally fermented African locust bean condiment. J. Biotechnol. Biochem. 3:42-46.

16.
Glick, B. R. and Y. Bashan. 1997. Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 11:353-378.

17.
Gracia de Salamone, I. E., R. K. Hynes, and L. M. Nelson. 2001. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47:404-411. crossref(new window)

18.
Gulati, A., P. Vyas, P. Rahi, and R. C. Kasana. 2009. Plant growth promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58:371-377. crossref(new window)

19.
Gutierrez, C. K., G. Y. Matsui, D. E. Lincoln, and C. R. Lovell. 2009. Production of the phytohormone indole-3-acetic acid by the estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75:2253-2258. crossref(new window)

20.
Gutierrez-Manero, F. J., B. Ramos-Solano, A. Probanza, J. Mehouachi, F. R. Tadeo and M. Talon. 2001. The plantgrowth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111:206-211. crossref(new window)

21.
Hamdali, H., M. Hafidi, M. J. Virolle, and Y. Ouhdouch. 2008. Rock phosphate solubilizing Actinimycetes: Screening fro plant growth promoting activities. World J. Microbiol. Biotechnol. 24:2565-2575. crossref(new window)

22.
Jeon, J. S., S. S. Lee, H. Y. Kim, T. S. Ahn, and H. G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41:271-276.

23.
Jung, Y. P., K. C. Kyung, K. Y. Jang, and M. H. Yoon. 2011. Isolation and characterization of plant growth promoting rhizobacteria from waste mushroom bed from Agaricus bisporus. Korean J. Soil Sci. Fert. 44:866-871. crossref(new window)

24.
Kim, K. J., Y. J. Yang, and J. G. Kim. 2003. Purification and characterization of chitinase from Streptomyces sp M-20. J. Biochem. Mol. Biol. 36:185-189. crossref(new window)

25.
Lie, J., D. H. Ovakim, T. C. Charles, and B. R. Glick. 2000. ACC deaminase minus mutant of Enterobacter cloaca UW4 no longer promotes root elongation. Curr. Microbiol. 41:101-105. crossref(new window)

26.
Lipping, Y., X. Jiatao, J. Daohong, F. Yanping, L. Guoqing, and L. Fangcan. 2008. Antifungal substances produced by Penicillium oxalicum strain PY-1-potential antibiotics against plant pathogenic fungi. World J. Microbiol. Biotechnol. 24:909-915. crossref(new window)

27.
Lucy, M., E. Reed, and B. R. Glick. 2004. Application of free living plant growth promoting rhizobacteria. Antonie van leeuwenhoek. 86:1-25. crossref(new window)

28.
Mittal, V., O. Singh, H. Nayyar, J. Kaur, and R. Tewari. 2008. Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol. Biochem. 40:718-727. crossref(new window)

29.
Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27:31-36. crossref(new window)

30.
Nagrajkumar, M., R. Bhaskaran, and R. Velazhahan. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath of blight pathogen. Microbiol. Res. 159:73-81. crossref(new window)

31.
Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. crossref(new window)

32.
O' Sullivan, D. J. and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in the suppression of plant root pathogens. Microbiol. Rev. 56:662-676.

33.
Pandey, A., P. Trivedi, B. Kumar and L. M. S. Palni. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a subalpine location in the Indian Central Himalaya. Curr. Microbiol. 53:102-107. crossref(new window)

34.
Payne, S. M. 1994. Detection, isolation and characterization of siderophores. In, Methods Enzymol. 235:329-344. crossref(new window)

35.
Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol. Plant. 118:10-15. crossref(new window)

36.
Poonguzhali, S., M. Madhaiyan, and T. Sa. 2008. Isolation and Identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18:773-777.

37.
Robert, W. K. and P. S. Cabib. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134:169-176.

38.
Sahin, F., R. Cakmakci, and F. Kantar. 2004. Sugar beet and barely yields in relation to inoculation with $N_2$ fixing and phosphate solubilizing bacteria. Plant Soil. 265:123-129. crossref(new window)

39.
Sawar, M. and R. J. Kremer. 1995. Enhanced suppression of plant growth through production of L-tryptophan compounds by deleterious rhizobacteria. Plant Soil. 172:261-269. crossref(new window)

40.
Schippers, B., A. W. Bakker, R. Bakker, and R. Van Peer. 1990. Beneficial and deleterious effects of HCN producing pseudomonads on rhizosphere interactions. Plant Soil. 129:75-83. crossref(new window)

41.
Schwyn, R. and J. B. Neilands. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160:47-56. crossref(new window)

42.
Streit, F., U. Christians, H. M. Schiebel, K. L. Napoli, L. Ernst, A. Linck, B. D. Kahan, and K. F. Sewing. 1996 Sensitive and specific quantification of sirolimus (rapamycin) and its metabolites in blood of kidney graft recipients by HPLC/electrospray-mass spectrometry. Clin. Chem. 42:1417-1425.

43.
Vikram, A., and H. Hamzehzarghani. 2008. Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiate L. Wilczec). Res. J. Microbiol. 3:62-72. crossref(new window)

44.
Wani, P. A., M. S. Khan, and A. Zaidi. 2007a Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta. Agron. Hung 55:315-323. crossref(new window)

45.
Wani, P. A., M. S. Khan, and A. Zaidi. 2007b. Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J. Plant Nutr. Soil Sci. 170:283-287. crossref(new window)

46.
Zaid, A., and M. S. Khan. 2006. Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram Bradyrhizobium symbiosis. Turk. J. Agric. 30:223-230.