JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation of Soil Moisture Content from Backscattering Coefficients Using a Radar Scatterometer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of Soil Moisture Content from Backscattering Coefficients Using a Radar Scatterometer
Kim, Yi-Hyun; Hong, Suk-Young; Lee, Jae-Eun;
  PDF(new window)
 Abstract
Microwave remote sensing can help monitor the land surface water cycle, crop growth and soil moisture. A ground-based polarimetric scatterometer has an advantage for continuous crop using multi-polarization and multi-frequencies and various incident angles have been used extensively in a frequency range expanding from L-band to Ka-band. In this study, we analyzed the relationships between L-, C- and X-band signatures and soil moisture content over the whole soybean growth period. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. L-band backscattering coefficients were higher than those observed using C- or X-band over the period. Backscattering coefficients for all frequencies and polarizations increased until Day Of Year (DOY) 271 and then decreased until harvesting stage (DOY 294). Time serious of soil moisture content was not a corresponding with backscattering over the whole growth stage, although it increased relatively until early August (R2, DOY 224). We conducted the relationship between the backscattering coefficients of each band and soil moisture content. Backscattering coefficients for all frequencies were not correlated with soil moisture content when considered over the entire stage (). However, we found that L-band HH polarization was correlated with soil moisture content (r=0.90) when Leaf Area Index (LAI)<2. Retrieval equations were developed for estimating soil moisture content using L-band HH polarization. Relation between L-HH and soil moisture shows exponential pattern and highly related with soil moisture content (). Results from this study show that backscattering coefficients of radar scatterometer appear effective to estimate soil moisture content.
 Keywords
Microwave remote sensing;Scatterometer;Backscattering coefficients;Soil moisture content;Retrieval equations;
 Language
Korean
 Cited by
1.
COSMO-SkyMed SAR 영상을 이용한 밀 생육 모니터링,김이현;홍석영;이경도;장소영;이훈열;오이석;

대한원격탐사학회지, 2013. vol.29. 1, pp.35-43 crossref(new window)
2.
Estimation of Soil Moisture Content in Corn Field Using Microwave Scatterometer Data,;;;;;

한국토양비료학회지, 2014. vol.47. 4, pp.235-241 crossref(new window)
1.
Monitoring Wheat Growth by COSMO-SkyMed SAR Images, Korean Journal of Remote Sensing, 2013, 29, 1, 35  crossref(new windwow)
2.
Estimation of Soil Moisture Content in Corn Field Using Microwave Scatterometer Data, Korean Journal of Soil Science and Fertilizer, 2014, 47, 4, 235  crossref(new windwow)
 References
1.
Bahari, S.A., H. Tali., T. Chuah, and H.T. Ewe. 1997. A preliminary study of phenological growth stages of wetland rice using ERS1/2 SAR data. in proc. IEEE International Geoscience Remote Sensing Symposium. pp. 1069-1071.

2.
Bartsch, A., C. Pathe, and W. Wagner. 2007. Relative soil moisture from C- and L-band SAR time series, The 1st Joint PI Symposium of ALOS Data Nodes for ALOS Science Program, Kyoto, Japan. 19-23 Nov. 2007.

3.
Bindlish, R. and A.P. Barros. 2001. Parameterization of vegetation backscatter in radar-based soil moisture estimation. Remote Sens. Environ. 76:130-137. crossref(new window)

4.
Bouvet, A. and T. Le Toan. 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens. Environ. 115:1090-1101. crossref(new window)

5.
Chen, C. and H. Mcnairn. 2006. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27:1367-1393. crossref(new window)

6.
Dobson, M.C. and F.T. Ulaby. 1986. Active microwave soil moisture research. IEEE Trans. Geosci. Remote Sens. 24:23-36. crossref(new window)

7.
Fehr, W.R. and C.E. Caviness. 1977. Stages of soybean development. Iowa Agric. Home Econ. Exp. Stn, IA, USA.

8.
Fung, A.K. 1994. Microwave scattering and emission models and their applications. Artech House Inc., Norwood, MA, USA.

9.
Hallikainen, T., F.T. Ulaby., M.C. Dobson., M.A. El-Rayes, and L. Wu. 1985. Microwave dielectric behavior of wet soil. Part-I: Empirical models and experimental observation. IEEE Trans. Geosci. Remote Sens. 23:25-34. crossref(new window)

10.
Jackson, T.J., A. Chang, and T.J. Schmugge. 1981. Aircraft active microwave measurements for estimating soil moisture. Photogramm. Eng. Rem. Sens. 47:801-805.

11.
Kim, Y.H., S.Y. Hong., H.Y. Lee, and J.E. Lee. 2011. Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement. Korean J. Remote Sens. 27(2):191-201. crossref(new window)

12.
Kurosu, T., M. Fujita, and K. Chiba. 1995. Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans. Geosci. Remote Sens. 33(4):1092-1096. crossref(new window)

13.
Le Toan, T., H. Laur., E. Mougin, and A. Lopes. 1989. Multi-temporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Trans. Geosci. Remote Sens. 27(6):709-718. crossref(new window)

14.
Macelloni, G., S. Paloscia., P. Pampaloni., F. Mariliani, and M. Gai. 2001. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 39:873-884. crossref(new window)

15.
Maity, S., C. Patnaik, and S. Panigraphy. 2004. Analysis of temporal backscattering of cotton crops using a semiempirical model. IEEE Trans. Geosci. Remote Sens. 42: 577-587. crossref(new window)

16.
Moran, M.S., C.D. Peters-Lidard., J.M Watts, and S. McElroy. 2004. Estimating soil moisture at the watershed scale with satellite-based. Can. J. Rem. Sens. 30:805-826. crossref(new window)

17.
Paris, J.F. 1986. The effect of leaf size on the microwave backscattering by corn. Remote Sens. Environ. 19:81-95. crossref(new window)

18.
Prasad, R. 2009. Retrieval of crop variables with field-based X-band microwave remote sensing of ladyfinger. Advanced in space research. 43:1356-1363. crossref(new window)

19.
Prevot, L., I. Champion, and G. Guyot. 1993. Estimation surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer. Remote Sens. Environ. 46:331-339. crossref(new window)

20.
Ram, V., M, Ali., M, Daily, J. Gabrynowicz, S. Narumalani, K. Nygard, W. Perrizo., S. Reichenbach., G.A. Seielstad, and W. White. 1995. Accessing Earth system science data and applications through high-bandwidth networks. IEEE Sel. Areas Commun. 13:793-805. crossref(new window)

21.
Ribbes, F. and T. Le Toan. 1999. Rice field mapping and monitoring with RADARSAT data. Int. J. Remote Sens. 20:745-765. crossref(new window)

22.
Schmugge, T. 1978. Remote sensing of surface soil moisture. J. Appl. Meteorol. Clim. 17:1549-1557. crossref(new window)

23.
Singh, D. 2006. Scatterometer performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X-band. Int. J. Remote Sens. 27(19):4101- 4115. crossref(new window)

24.
Ulaby, F.T. 1974. Radar measurement of soil moisture content. IEEE Trans. Antennas Propag. 22:257-265. crossref(new window)

25.
Ulaby, F.T. M.K, Moore, and A.K. Fung. 1982, Microwave remote sensing. Active and Passive. Artech House Inc., Norwood, MA, USA.

26.
Ulaby, F.T., C.T. Allen., G. Eger, and E.T. Kanemasu. 1984. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 14:113-133. crossref(new window)

27.
Ulaby, F.T. and C. Elachi. 1990. Radar polarimetry for geoscience applications. Artech House Inc., Norwood, MA, USA.

28.
Wagner, W., G. Lemoine., M. Borgeaud, and H. Rott. 1999. A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens. 37:938-948. crossref(new window)

29.
Xiao, X., S. Boles., S. Frolking., C. Li., J.Y. Babu, and W. Salas. 2005. Mapping paddy rice agriculture in south and southeast asia using multi-temporal MODIS images. Remote Sens. Environ. 100:95-113.