Advanced SearchSearch Tips
Recovery of Sustainable Renewable Energy from Marine Biomass
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Recovery of Sustainable Renewable Energy from Marine Biomass
Gurung, Anup; Oh, Sang-Eun;
  PDF(new window)
Marine biomass is considered an important substrate for anaerobic digestion to recovery energy i.e. methane. Nevertheless, marine biomass has attracted little attention by researchers compared to terrestrial feedstock for anaerobic digestion. In this study, biochemical methane potential (BMP) test was used to evaluate generation of renewable energy from starfish. A cumulative biogas yield of was obtained after 60 days of digestion. The cumulative methane yield of was obtained after 60 days of digestion. The methane content of the biogas was approximately 70%. The calculated data applying the modified Gompertz equation for the cumulative production showed good correlation with the experimental result obtained from this batch study. Since the result obtained from this study is comparable to results with other substrates, marine biomass can be co-digested with food waste or swine wastewater to produce gas that will help to reduce the gap in global energy demand.
Biogas;Co-digestion;Marine biomass;Renewable energy;
 Cited by
Agdag, O.N. and D.T. Sponza. 2005. Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes. Chemosphere. 59:871-879. crossref(new window)

Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J.L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J.B. Van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 59:927-934. crossref(new window)

APHA. 1998. Standard methods for the examination of water and wastewater.American Public Health Association: USA.

Bauen, A. 2006. Future energy sources and systems-Acting on climate change and energy security. J. Power Sources. 157:893-901. crossref(new window)

Behera, S.K., J.M. Park, K.H. Kim, and H.S. Park. 2010. Methane production from food waste leachate in laboratory-scale simulated landfill. Waste Manage. 30:1502-1508. crossref(new window)

Bird, K.T., D.P. Chynoweth, and D.E. Jerger. 1990. Effects of marine algal proximate composition on methane yields. J. Appl. Phycol. 2:207-213. crossref(new window)

Chandra, R., V.K. Vijay, P.M.V. Subbarao, and T.K. Khura. 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Appl. Energy. 93:148-159. crossref(new window)

Cho, J.K., S.C. Park. and H.N. Chang. 1995. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour. Technol. 52:245-253. crossref(new window)

Chynoweth, D.P., J.M. Owens, and R. Legrand. 2000. Renewable methane from anaerobic digestion of biomass. Renew. Energy. 22:1-8.

Ehimen, E.A., Z.F. Sun, C.G. Carrington, E.J. Birch, and J.J. Eaton-Rye. 2011. Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl. Energy. 88:3454-3463. crossref(new window)

Gompertz, B. 1825. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Philos. T. Roy. Soc. Lon. 115:513-583. crossref(new window)

Gunaseelan, V.N. 2004. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy. 26:389-399. crossref(new window)

Hansen, T.L., J.E. Schmidt, I. Angelidaki, E. Marca, J.L.C. Jansen, H. Mosbaek, and T.H. Christensen. 2004. Method for determination of methane potentials of solid organic waste. Waste Manage. 24:393-400. crossref(new window)

Heo, N.H., S.C. Park, and H. Kang. 2004. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge. J. Environ. Sci. Health A 39:1739-1756. crossref(new window)

IEA. 2011. Key world energy statistics. International Energy Agency: Paris.

Katuwal, H. and A.K. Bohara. 2009. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev. 13:2668-2674. crossref(new window)

Kim, H.W., S.K. Han, and H.S. Shin. 2003. The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manage. Res. 21:515-526. crossref(new window)

Klass, D.L. 1974. Perpetual methane economy- is it possible? Chemische Technik. 3:161-168.

Lee, D.H. S.K. Behera, J.W. Kim, and H.S. Park. 2009. Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manage. 29:876-882. crossref(new window)

Liu, G., R. Zhang, R. H.M. El-Mashad, and R. Dong. 2009. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol. 100:5103-5108. crossref(new window)

Oslaj, M., B. Mursec, and P. Vindis. 2010. Biogas production from maize hybrids. Biomass Bioenergy. 34:1538-1545. crossref(new window)

Owen, W.F., D.C. Stuckey, and J.B.Healy Jr. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13:485-492. crossref(new window)

Raposo, F., C.J. Banks, I. Siegert, S. Heaven, and R. Borja. 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41:1444-1450. crossref(new window)

Rincon, B., C.J. Banks, and S. Heaven. 2010. Biochemical methane potential of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice. Bioresour. Technol. 101:8179-8184. crossref(new window)

Sialve, B., N. Bernet, and O. Bernard. 2009. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 27:409-416. crossref(new window)

Speece, R. 1996. Anaerobic biotechnology for industrial wastewaters. Nashville: Archae press.

Van Ginkel, S.W., S.E. Oh, and B.E. Logan. 2005. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydro. Energy. 30:1535-1542. crossref(new window)

Vergara-Fernandez, A., G. Vargas, N. Alarcon, and A. Velasco. 2008. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy. 32:338-344. crossref(new window)

Vindis, P., B. Mursec, M. Janzekovic, and F. Cus. 2007. Processing of soyabean meal into concentrates and testing for genetically modified organism (GMO). J. Achieve Mat. Manu. Eng. 20:507-510.

Weiland, P. 2010. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 85:849-860. crossref(new window)

Yokoyama, S., K. Jonouchi, and K. Imou. 2007. Energy production from marine biobass: Fuel cell power generation driven by methane produced from seaweed. W. Aca. Sci. Eng. Technol. 28:320-322.

Zhang, R., H.M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate, and P. Gamble. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98:929-935. crossref(new window)

Zwietering, M.H., I. Jongenburger, F.M. Rombouts, and K. VAN 'T Riet. 1990. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 56:1875-1881.