JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges
Gurung, Anup; Oh, Sang-Eun;
  PDF(new window)
 Abstract
The heavy reliance on fossil fuels, especially oil and gas has triggered the global energy crisis. Continued use of petroleum fuels is now widely recognized as unsustainable because of their depleting supplies and degradation to the environment. To become less dependent on fossil fuels, current world is shifting paradigm in energy by developing alternative energy sources mainly through the utilization of renewable energy sources. In particular, bioenergy recovery from wastes with the help of microorganism is viewed as one of the promising ways to mitigate the current global warming crisis as well as to supply global energy. It has been proved that microorganism can generate power by converting organic matter into electricity using microbial fuel cells (MFCs). MFC is a bioelectrochemical device that employs microbes to generate electricity from bio-convertible substrate such as wastewaters including municipal solid waste, industrial, agriculture wastes, and sewage. Sustainability, carbon neutral and generation of renewable energy are some of the major features of MFCs. However, the MFC technology is confronted with a number of issues and challenges such as low power production, high electrode material cost and so on. This paper reviews the recent developments in MFC technology with due consideration of electrode materials used in MFCs. In addition, application of biocathodes in MFCs has been discussed.
 Keywords
Microbial fuel cell;Electricity;Sustainability;Economic;Biocathode;
 Language
English
 Cited by
1.
ChemInform Abstract: Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges, ChemInform, 2013, 44, 11, no  crossref(new windwow)
 References
1.
Aelterman, P., S. Freguia, J. Keller, W. Verstraete, and K. Rabaey. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol., 78:409-418. crossref(new window)

2.
Aelterman, P., K. Rabaey, H.T. Pham, N. Boon, and W. Verstraete. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 40:3388-3394. crossref(new window)

3.
Aulenta, F., P. Reale, A. Canosa, S. Rossetti, S. Panero, and M. Majone, 2010. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens. Bioelectron., 25:1796 -1802. crossref(new window)

4.
Bard, A. and L. Faulkner, 2001. Electrochemical methodsfundamentals and applications. Wiley, New York.

5.
Bauen, A. 2006. Future energy sources and systems- Acting on climate change and energy security. J. Power Sources, 157: 893-901. crossref(new window)

6.
Bergel, A., D. Feron, and A. Mollica, 2005. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun., 7:900-904. crossref(new window)

7.
Berk, R. 1964. Bioelectrochemical energy conversion. Appl. Microbiol., 12:10-12.

8.
Bond, D.R., D.E. Holmes, L.M. Tender, and D.R.Lovley. 2002. Electrode-Reducing Microorganisms that Harvest Energy from Marine Sediments. Sci., 295:483-485. crossref(new window)

9.
Bond, D.R. and D.R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69:1548-1555. crossref(new window)

10.
Cao, X., X. Huang, P. Liang, N. Boon, M. Fan, L. Zhang, and X. Zhang. 2009. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ. Sci., 2: 498-501. crossref(new window)

11.
Chen, G.-W., S.-J.Choi, T.-H. Lee, G.-Y. Lee, J.-H. Cha, and C.-W. Kim. 2008. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl. Microbiol. Biotechnol., 79:379-388. crossref(new window)

12.
Chen, Z., Y.-c. Huang, J.-h. Liang, F. Zhao, and Y.-g. Zhu. 2012. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour. Technol., 108:55-59. crossref(new window)

13.
Cheng, S., H. Liu, and B.E. Logan. 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 40:364- 369. crossref(new window)

14.
Cheng, S. and B.E. Logan. 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9:492-496. crossref(new window)

15.
Cheng, S., D. Xing, D.F. Call, and B.E. Logan. 2009. Direct biological conversion of electrical current into methane by Electromethanogenesis. Environ. Sci. Technol., 43:3953 -3958. crossref(new window)

16.
Clauwaert, P., K. Rabaey, P. Aelterman, L. De Schamphelaire, T.H. Pham, P. Boeckx, N. Boon, and W. Verstraete. 2007a. Biological Denitrification in Microbial Fuel Cells. Environ. Sci. Technol., 41:3354-3360. crossref(new window)

17.
Clauwaert, P., D. van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstraete. 2007b. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ. Sci. Technol., 41:7564- 7569. crossref(new window)

18.
Cournet, A., M. Delia, A. Bergel, C. Roques, and M. Berge. 2010. Electrochemical reduction of oxygen catalyzed by a wide range of baceria including Gram-positive. Electrochem. Commun., 12:505-508. crossref(new window)

19.
Deng, Q., X. Li, J. Zuo, A. Ling, and B.E. Logan. 2010. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources, 195:1130-1135. crossref(new window)

20.
Dumas, C., R. Basseguy, and A. Bergel. 2008. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta, 53:2494-2500. crossref(new window)

21.
Erable, B., N. Duteanu, S.M.S. Kumar, Y. Feng, M.M.Ghangrekar, and K. Scott. 2009. Nitric acid activation of graphite granules to increase the performance of the non- catalyzed oxygen reduction reaction (ORR) for MFC applications. Electrochem. Commun., 11:1547-1549. crossref(new window)

22.
Fan, Y., S. Xu, R. Schaller, J. Jiao, F. Chaplen, and H. Liu. 2011. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron., 26:1908-1912. crossref(new window)

23.
Feng, Y., Q. Yang, X. Wang, and B.E. Logan. 2010. Treatment of carbon fiber brush anodes for improving power generation in aircathode microbial fuel cells. J. Power Sources, 195:1841-1844. crossref(new window)

24.
Franks, A., N. Malvankar, and K. Nevin. 2010. Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels, 1:589 -604. crossref(new window)

25.
Geller, H., R. Schaeffer, A. Szklo, and M. Tolmasquim. 2004. Policies for advancing energy efficiency and renewable energy use in Brazil. Energy Policy, 32:1437-1450. crossref(new window)

26.
Gregory, K. and D. Lovley. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrode. Environ. Sci. Technol., 39:8943-8947. crossref(new window)

27.
HaoYu, E., S. Cheng, K. Scott, and B. Logan. 2007. Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sources, 171:275-281. crossref(new window)

28.
He, Z. and L.T. Angenent, 2006. Application of bacterial biocathodes in Microbial Fuel Cells. Electroanal., 18:2009-2015. crossref(new window)

29.
Hu, Z. 2008. Electricity generation by a baffle-chamber membraneless microbial fuel cell. J. Power Sources, 179:27-33. crossref(new window)

30.
Huang, L., X. Chai, S. Cheng, and G. Chen. 2011b. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem. Eng. J., 166:652-661. crossref(new window)

31.
Huang, L.and B. Logan. 2008. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl. Microbiol. Biotechnol., 80:349-355. crossref(new window)

32.
Huang, L., J.M. Regan, and X. Quan. 2011a. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol., 102L316-323. crossref(new window)

33.
IEA 2006. World energy outlook. International Energy Agency, Paris.

34.
IEA 2011. Key world energy statistics. International Energy Agency, Paris.

35.
Ieropoulos, I., J. Greenman, and C. Melhuish. 2010. Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochem., 78:44-50. crossref(new window)

36.
IPCC 2000. Special report on emission scenarios. Summary for Policy Makers, Intergovernmental Panel on Climate Change, United Nations, Nairobi.

37.
Jeremiasse, A., H. Hamelers, and C. Buisman. 2010. Microbial electrolysis cell with a microbial biocathode. Bioelectrochem., 78:39-43. crossref(new window)

38.
Katuwal, H. and A.K. Bohara, 2009. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev., 13:2668-2674. crossref(new window)

39.
Kim, J.R., B. Min, and B.E. Logan. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol., 68:23-30. crossref(new window)

40.
Knights, S., J. Taylor, D. Wikinson, and D. Wainwright. 2003. Fuel cell anode structures for voltage reversal tolerance. Paten, Ballard Power Systems, Inc, USA.

41.
Lefebvre, O., A. Al-Mamun, and H. Ng. 2008b. A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci. Technol., 58:881-885. crossref(new window)

42.
Lefebvre, O., A. Al-Mamun, W.K. Ooi, Z. Tang, D.H.C. Chua, and H.Y. Ng. 2008a. An insight into cathode options for microbial fuel cells. Water Sci. Technol., 57:2031- 2037. crossref(new window)

43.
Leung, G.C. 2011. China's energy security: Perception and reality. Energy Policy, 39:1330-1337. crossref(new window)

44.
Li, Z., X. Zhang, and L. Lei. 2008. Electricity production during the treatment of real electroplating wastewater containing $Cr^{6+}$ using microbial fuel cell. Process Biochem., 43:1352-1358. crossref(new window)

45.
Liu, H., S. Cheng, and B. Logan. 2005. Production of electricity from acetate or butyrate using a single chamber microbial fuel cell. Environ. Sci. Technol., 39:5488-5493. crossref(new window)

46.
Liu, H., R. Ramnarayanan, and B.E. Logan. 2004. Production of electricity during wastewater treatment using a wingle chamber microbial fuel cell. Environ. Sci. Technol., 38:2281-2285. crossref(new window)

47.
Liu, Z., J. Liu, S. Zhang, X.-H. Xing, and Z. Su. 2011. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour. Technol., 102:10221-10229. crossref(new window)

48.
Logan, B.E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40:5181-5192. crossref(new window)

49.
Logan, B.E., C. Murano, K. Scott, N.D. Gray, and I.M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res., 39:942-952. crossref(new window)

50.
Lojou, E., M. Durand, A. Dolla, and P. Bianco. 2002. Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanal., 14:913-922. crossref(new window)

51.
Lu, N., S. Zhou, L. Zhuang, J. Zhnag, and J. Ni. 2009. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J., 43:246 -251. crossref(new window)

52.
Mao, Y., L. Zhang, D. Li, H. Shi, Y. Liu, and L. Cai. 2010. Power generation from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria. Electrochim. Acta, 55L7804-7808. crossref(new window)

53.
Min, B., J. Kim, S. Oh, J.M. Regan, and B.E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res., 39:4961-4968. crossref(new window)

54.
Min, B. and B.E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic dubstrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38:5809-5814. crossref(new window)

55.
Mohan, S., S. Raghavulu, S. Shrikanth, S.Srikanth, and P. Sharma. 2007. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr. Sci., 92:1720-1726.

56.
Mohanakrishna, G., S. Venkata Mohan, and P.N. Sarma. 2010. Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J. Hazard. Mater., 177:487-494. crossref(new window)

57.
Mulder, P. and J. Tembe. 2008. Rural electrification in an imperfect world: A case study from Mozambique. Energy Policy, 36:2785-2794. crossref(new window)

58.
Nam, J.-Y., H.-W.Kim, K.-H. Lim, and H.-S. Shin. 2010. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single- chamber microbial fuel cell. Bioresour. Technol., 101:S33-S37. crossref(new window)

59.
Nealson, K. and D. Saffarini. 1994. Iron and Manganese in Anaerobic Respiration: Environmental Significance, Physiology, and Regulation. Annu. Rev. Microbiol., 48:311-343. crossref(new window)

60.
Oh, S. and B. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70:162-169. crossref(new window)

61.
Oh, S. and B.E. Logan. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res., 39:4673-4682. crossref(new window)

62.
Oh, S.E. and B.E. Logan. 2007. Voltage reversal during microbial fuel cell stack operation. J. Power Sources, 167:11-17. crossref(new window)

63.
Osman, M.H., A.A. Shah, and F.C. Walsh. 2010. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens. Bioelectron., 26:3087-3102.

64.
Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101:1533-1543. crossref(new window)

65.
Park, D.H. and J.G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol., 181:2403-2410.

66.
Park, D.H. and J.G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81:348-355. crossref(new window)

67.
Peng, L., S.-J. You, and J.-Y. Wang. 2010. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens. Bioelectron., 25:1248 -1251. crossref(new window)

68.
Potter, M. 1931. Electrical effects accompanying the decomposition of organic compounds. Proc. R Soc. London Ser. B, 91:465-480.

69.
Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete. 2005b. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 39:8077-8082. crossref(new window)

70.
Rabaey, K., P. Girguis, and L.K. Nielsen. 2011. Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol., 22:371-377. crossref(new window)

71.
Rabaey, K. and W. Verstraete. 2005a. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23:291-298. crossref(new window)

72.
Rao, J.R., G.J. Richter, F. Von Sturm, and E. Weidlich. 1976. The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectroch. Bioener., 3:139-150. crossref(new window)

73.
Rhoads, A., H. Beyenal, and Z. Lewandowski. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol., 39:4666-4671. crossref(new window)

74.
Rismani-Yazdi, H., S.M. Carver, A.D. Christy, and O.H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources, 180:683-694. crossref(new window)

75.
Rosenbaum, M., F. Aulenta, M. Villano, and L.T. Angenent. 2011. Cathode as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are invovled? Bioresour. Technol., 102:324-333. crossref(new window)

76.
Rozendal, R.A., H.V.M. Hamelers, K. Rabaey, J. Keller, and C.J.N. Buisman. 2008. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol., 26:450-459. crossref(new window)

77.
Scott, K., G.A. Rimbu, K.P. Katuri, K.K.Prasad, and I.M. Head. 2007. Application of nodified carbon anodes in nicrobial Fuel cells. Process Saf. Environ., 85:481-488. crossref(new window)

78.
Shin, S., Y. Choi, S. Na, S. Jung, and S. Kim. 2006. Development of bipolar plate stack type microbial fuel cell. Bull. Korean Chem. Soc., 27:281-285. crossref(new window)

79.
Stams, A.J.M., F.A.M. De Bok, C.M. Plugge, M.H.A. Van Eekert, J. Dolfing, and G. Schraa. 2006. Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol., 8:371-382. crossref(new window)

80.
Steinbusch, K., H. Hamelers, J. Schaap, C. Kampman, and C. Buisman. 2010. Bioelectrochemical ethanol production thorugh mediated acetate reduction by mixed culture. Environ. Sci. Technol., 44:513-517. crossref(new window)

81.
Strycharz, S., T. Woodward, J. Johnson, K. Nevin, R. Sanford, F. Loeffler, and D.R. Lovley. 2008. Graphite electrodes as a sole electron donor for reductive dechlorination of tetracholoethene by Geobacter lovleyi. Appl. Environ. Microbiol., 74:5943-5847. crossref(new window)

82.
Sun, J.-J., H.-Z. Zhao, Q.-Z. Yang, J. Song, and A. Xue. 2010. A novel layer-by-layer self-assembled carbon nanotube- based anode: Preparation, characterization, and application in microbial fuel cell. Electrochim. Acta, 55:3041-3047. crossref(new window)

83.
Sun, J., Z. Bi, B. Hou, Y.-q. Cao, and Y.-Y. Hu. 2011. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res., 45:283-291. crossref(new window)

84.
Tandukar, M., S. Huber, T. Onodera, and S. Pavlostathis. 2009. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ. Sci. Technol., 43:8159-8165. crossref(new window)

85.
Tang, X., K. Guo, H. Li, Z. Du, and J. Tian. 2011. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol., 102:3558 -3560. crossref(new window)

86.
Ter Heijne, A., H.V.M. Hamelers, and C.J.N. Buisman. 2007. microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ. Sci. Technol., 41:4130-4134. crossref(new window)

87.
Ter Heijne, A., H.V.M. Hamelers, M. Saakes, and C.J.N. Buisman. 2008. Performance of non-porous graphite and titaniumbased anodes in microbial fuel cells. Electrochim. Acta, 53:5697-5703. crossref(new window)

88.
Umbach, F. 2010. Global energy security and the implications for the EU. Energy Policy:38:1229-1240. crossref(new window)

89.
Villano, M. F.Aulenta, C. Ciucci, T. Ferri, A. Giuliano, and M. Majone. 2010. Bioelectrochemical reduction of $Co_{2}$ to $CH_{4}$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol., 101:3085- 3090. crossref(new window)

90.
Wang, K., Y. Liu, and S. Chen. 2011. Improved microbial electrocatalysis with neutral red immobilized electrode. J. Power Sources, 196:164-168. crossref(new window)

91.
Wang, X., S. Cheng, Y. Feng, M.D. Merrill, T. Saito, and B.E. Logan. 2009. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43:6870 -6874. crossref(new window)

92.
Wang, X., Y.J. Feng, and H. Lee. 2008. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol., 57:1117-1121. crossref(new window)

93.
Watanabe, K. 2008. Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. J. Biosci. Bioeng., 106:528-536. crossref(new window)

94.
Wei, J., P. Liang, X. Cao, and X. Huang. 2011a. Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Bioresour. Technol., 102:10431- 10435. crossref(new window)

95.
Wei, J., P. Liang, and X. Huang. 2011b. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol., 102:9335- 9344. crossref(new window)

96.
Weiland, P. 2010. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol., 85:849-860. crossref(new window)

97.
Wrighton, K.C. and J.D. Coates. 2009. Microbial fuel cells: plug-in and power-on microbiology. Microbes, 4:281-287.

98.
You, S.J., N.Q. Ren, Q.L. Zhao, J.Y. Wang, and F.L. Yang. 2009. Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells, 9:588-596. crossref(new window)

99.
Zhang, F., T. Saito, S. Cheng, M.A. Hickner, and B.E. Logan. 2010. Microbial Fuel Cell Cathodes With Poly (dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors. Environ. Sci. Technol., 44:1490-1495. crossref(new window)