JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Actinobacteria Isolation from Metal Contaminated Soils for Assessment of their Metal Resistance and Plant Growth Promoting (PGP) Characteristics
Tekaya, Seifeddine Ben; Tipayno, Sherlyn; Chandrasekaran, Murugesan; Yim, Woo-Jong; Sa, Tong-Min;
  PDF(new window)
 Abstract
Heavy metals and metalloids removal can be considered as one of the most important world challenges because of their toxicity and direct impact on human health. Many processes have been introduced but biological processes of remediation seem to offer the most suitable solution in terms of efficiency and low cost. Actinobacteria constitute one of the major microbial populations in soil, and this can be attributed to their adaptive morphological structure as well as their exceptional metabolic power. Among microbes, actinobacteria are morphologic intermediate between fungi and bacteria. Studies on microbial diversities in metal contaminated lands have shown that actinobacteria may constitute a dominantly active microbiota in addition to Proteobacteria. Furthermore, isolation studies have shown metal removal mechanisms which are reminiscent of notable multiresistant strains, such as Cupriavidus metallidurans. Apart from members of genus Streptomyces, which produce more than 90% of commercialized antibiotics, and the nitrogen fixing Frankia, little attention has been given to other members of this phylum. This is because of difficult culture condition requirements and maintenance. In this review, we focused on specific isolation of actinobacteria and their potential applications in metal bioremediation and plant growth promotion.
 Keywords
Actinobacteria;Metal resistance;Bioremediation;PGP;
 Language
English
 Cited by
 References
1.
Abbas, A. and C. Edward. 1989. Effects of metals on a range of Streptomyces species. Appl. Environ. Microb. 55:2030-2035.

2.
Aldesuquy, H.S., F.A. Mansour, and S.A. Abou-Hamed. 1998. Effect of the culture filtrate of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43(5):465-470. crossref(new window)

3.
Annaliesa, S.A. and E.M.H. Wellington. 2001. The taxonomy of Streptomyces and related genera. Int. J. Syst. Evol. Micr. 51:797-814. crossref(new window)

4.
Ara, I., N.A. Bukhari, D.R. Wijayanti, and M.A. Bakir. 2012. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from various regions in Saudi Arabia. Afr. J. Biotechnol. 16:3849-3857.

5.
Baskaran, R., R. Vijayakumar, and P.M. Mohan. 2011. Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands, India. Malays. J. Microbiol. 7(1):26-32.

6.
Benson, D.R. and W.B. Silvester. 1993. Biology of Frankia strains, Actinomycetes symbionts of actinorhizal plants. Microbiol. Rev. 57:293-319.

7.
Berndt, H., D.J. Lowe, and G.M. Yates. 1978. The nitrogen-fixing system of Corynebacterium autotrophicum. Eur. J. Biochem. 86:133-142. crossref(new window)

8.
Berdy, J. (2005) Bioactive microbial metabolites. J. Antibiot. 58(1):1-26. crossref(new window)

9.
Biggins, D.R. and J.R. Postgate. 1969. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J. gen. Microbiol. 56:181-193. crossref(new window)

10.
Colin, V.L., B.V. Liliana, and C.M. Abate. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int. Biodeter. Biodegr. 69:28-37. crossref(new window)

11.
Copping, L.G. and S.O. Duke. 2007. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 63:524- 554. crossref(new window)

12.
De Boer, W., S. Gerards, P.J.A. Gunnwiek Klein, and R. Modderman. 1999. Response of the chitinolytic microbial community to chitin amendments of dune soils. Biol. Fertil. Soils. 29:170-177. crossref(new window)

13.
Doumbou, C.L., M.K. Hamby Salove, D.L. Crawford, and C. Beaulieu. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection. 82:85-102. crossref(new window)

14.
Duffus, J.H. (2002) Heavy metals_ A meaningless term?. Pure Appl. Chem. 74:793-807. crossref(new window)

15.
Eitinger, T. and M.A. Mandrand-Berthelot. 2000. Nickel transport systems in microorganisms. Arch Microbiol. 173:1-9. crossref(new window)

16.
El-Tarabily, K.A. and S. Krishnapillai. 2006. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 38:1505-1520. crossref(new window)

17.
El-Tarabily, K.A., G.E.S.T. Hardy, K. Sivasithamparam, A.M. Hussein, and D.I. Kurtboke. 1997. The potential for the biological control of cavity-spot disease of carrots, caused by Pythium cloratum, by streptomycete and non-streptomycete actinomycetes. New Phytologist. 137:495-507. crossref(new window)

18.
El-Tarabily, K.A., M.H. Soliman, A.H. Nassar, H.A. Al-Hassani, K. Sivasithamparam, F. McKenna, and G.E.S.T Hardy. 2000. Biological control of Sclerotinia minor using a chinolytic bacterium and actinomycetes. Plant Pathol. 49:573-583. crossref(new window)

19.
Essoussi, I., F. Ghodhbane-Gtari, H. Amairi, H. Sghaier, A. Jaouani, L. Brusetti, D. Daffonchio, A. Boudabous, and M. Gtari. 2010. Esterase as an enzymatic signature of geodermatophilaceae adaptability to Sahara desert stones and monuments. J. Appl. Microbiol. 108:1723-1732. crossref(new window)

20.
Furrer, G., L.P. Brian, U. Kai-Uwe, P. Rosemarie, and H.C. William. 2002. The origin of Aluminium flocs in polluted streams. Science. 297:2245-2247. crossref(new window)

21.
Gacto, M., J. Vicente-Soler, J. Cansado, and T.G. Villa. 2000. Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. J. Appl. Microbiol. 88:961-967. crossref(new window)

22.
Ghodhbane-Gtari, F., I. Essoussi, M. Chattaoui, B. Chouaia, A. Jaouani, D. Daffonchio, A. Boudabous, and M. Gtari. 2010. Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis. 50:51-57. crossref(new window)

23.
Gremion, F., A. Chatzinotas, and H. Harms. 2003. Comparative 16S rDNA and rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ. Microbiol. 5(10):896-907. crossref(new window)

24.
Gtari, M., L. Brusetti, S. Gharbi, D. Mora, A. Boudabous, and D. Daffonchio. 2004. Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol. Lett. 234:349-355. crossref(new window)

25.
Gtari, M., F. Ghodhbane-Gtari, I. Nouioui, N. Beauchemin, and L.S. Tisa. 2012. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch Microbiol. 194:3-11. crossref(new window)

26.
Haferburg, G. and E. Kothe. 2007. Microbes and metals: interactions in the environment. J. Basic Microb. 47:453-467. crossref(new window)

27.
Hamaki, T., M. Suzuki, R. Fudou, Y. Jojima, T. Kajiura, A. Tabuchi, K. Sen, and H. Shibai. 2005. Isolation of Novel Bacteria and Actinomycetes Using Soil-Extract Agar Medium. J. Biosci. Bioeng. 99:485-492. crossref(new window)

28.
Hamdali, H., K. Moursalou, G. Tchangbedji, Y. Ouhdouch, and H. Mohamed. 2012. Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. Afr. J. Biotechnol. 11(2):312-320.

29.
Iwamoto, T. and M. Nasu. 2001. Current bioremediation practice and perspective. Journal of Bioscience and Bioengineering. 92:1-8. crossref(new window)

30.
Karelova, E., J. Harichova, T. Stojnev, D. Pangallo, and P. Ferianc. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metalcontaminated site. Biologia. 1:18-26.

31.
Lakshmipathy, D. and K. Kannabiran. 2010. Biosurfactant and heavy metal resistance activity of Streptomyces spp. isolated from saltpan soil. British J. Pharmacol. Toxicol. 1(1):33-39.

32.
Machado, M.D., E.V. Soares, and M.V.M. Helena Soares. 2010. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J. Hazard. Mater. 180:347-353. crossref(new window)

33.
Marta, A.P., A. Maria Julia, and C.M. Abate. 2011. Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut. 214:49-57. crossref(new window)

34.
Munson, G.P., D.L. Lam, F.W. Outten, and V.O. Thomas. 2000. Identification of a copper-responsive two-component system on the chromosome of Echerchia coli K-12. J. Bacteriol. 182:5864-5871. crossref(new window)

35.
Nawani, N.N., B.P. Kapadnis, A.D. Das, A.S. Rao, and S.K. Mahajan. 2002. Purification and characterization of thermophilic and acidophilic chitinase from Microbispora sp. V2. J. Appl. Microbiol. 93:965-975. crossref(new window)

36.
Nies, D.H. (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27:313-339. crossref(new window)

37.
Porter, J.N., J.J. Wilhelm, and H.D. Tresner. 1959. Method for the preferential isolation of Actinomycetes from soils. Appl. Environ. Microbiol. 8:174-178.

38.
Ravel, J., H. Schrempf, and R.T. Hill. 1998. Mercury resistance is encoded by transferable giant linear plasmids in two Chesapeake by Streptomyces strains. Appl. Environ. Microbiol. 64:3383-3388.

39.
Richards, J.W., G.D. Krumholz, M.S. Chval, and L.S. Tisa. 2002. Heavy metal resistance patterns of Frankia strains. Appl. Environ. Microbiol.68:923-927. crossref(new window)

40.
Sardi, P., M. Saracchi, S. Quaroni, B. Petrolini, G.E. Borgonovi, and S. Merli. 1992. Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl. Environ. Microbiol. 58:2691-2693.

41.
Schluenzen, F., C. Takemoto, D.N. Wilson, T. Kaminishi, J.M. Harms, K. Hanawa-Suetsugu, W. Szaflarski, M. Kawazoe, M. Shirouzo, K.H. Nierhaus, S. Yokoyama, and P. Fucini. 2006. The antibiotic Kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat. Struct. Mol. Biol. 13:871-886. crossref(new window)

42.
Schmidt, A., G. Haferburg, M. Sineriz, D. Merten, G. Buchel, and E. Kothe. 2005. Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem. Erde. Geochem. 65:131-144. crossref(new window)

43.
Shayne, J.J., P. Hugenholtz, P. Sangwan, C.A. Osborne, and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69:7210-7215. crossref(new window)

44.
Sineriz, M.L., E. Kothe, and C.M. Abate. 2009. Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J. Basic Microbiol. 49:55-62. crossref(new window)

45.
Solans, M. (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J. Basic Microbiol. 47:243-250. crossref(new window)

46.
Srinath, T., T. Verma, P.W. Ramteke, and S.K. Garg. 2002. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere. 48:427-435. crossref(new window)

47.
Stackebrandt, E. and P. Schumann. 2006. Introduction to the taxonomy of actinobacteria. In: Prokaryotes. 3:297-321.

48.
Stackebrandt, E., F.A. Rainey, and N.L. Ward-Rainey. 1997a. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47:479-491. crossref(new window)

49.
Stackebrandt, E., C. Sproer, F.A. Rainey, J. Burghardt, O. Pauker, and H. Hans. 1997b. Phylogenetic analysis of the genus Desulfotomaculum: Evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfotosporosinus gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47:1134-1139. crossref(new window)

50.
Tipayno, S., C.G. Kim, and T. Sa. 2012. T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Appl. Soil Ecol. 61:137-146. crossref(new window)

51.
Valls, M. and D.V. Lorenzo. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26:327-338. crossref(new window)

52.
Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater, and D.V. Sinderen. 2007. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71:495-548. crossref(new window)

53.
Williams, S.T. and F.L. Davies. 1965. Use of antibiotics for selective isolation and enumeration of Actinomycetes in soil. J. Gen. Microbiol. 38:251-261. crossref(new window)

54.
Williams, S.T., M. Goodfellow, G. Alderson, E.H.H. Wellington, P.H.A. Sneath, and M.J. Sackin. 1983. Numerical classification of streptomyces and related genera. J. Gen. Microbiol. 129:1743-1813.

55.
Wink, J., M.R. Kroppenstedt, G. Seibert, and E. Stackebrandt. 2003. Actinomadura namibiensis sp. nov. Int. J. Syst. Evol. Microbiol. 53:721-724. crossref(new window)

56.
Zhang, H., Y. Kyung Lee, W. Zhang, and H. Kum Lee. 2006. Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie van Leeuwenhoek. 90: 159-169. crossref(new window)