Advanced SearchSearch Tips
Variation of Microbial Communities with Crop Species in Controlled Horticultural Soils of Gyeongnam Province
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Variation of Microbial Communities with Crop Species in Controlled Horticultural Soils of Gyeongnam Province
Lee, Young-Han; Lee, Seong-Tae; Kim, Eun-Seok; Cho, Yong-Cho; Ok, Yong Sik; Kim, Min-Keun; Kim, HyeRan;
  PDF(new window)
In this study, we examined the chemical properties and microbial community characteristics in 25 controlled horticultural soils (CHS) sampled from Gyeongnam Province by fatty acid methyl ester (FAME) method. The electrical conductivity of watermelon CHS was significantly (p < 0.05) higher than those of red pepper CHS, pumpkin CHS, and strawberry CHS. The amounts of total FAMEs, total bacteria, gram-negative bacteria, gram-positive bacteria, and fungi were significantly (p < 0.05) higher in red pepper CHS than those in strawberry CHS and pumpkin CHS. In addition, higher (p < 0.05) ratios of cy19:0 to were detected in tomato CHS than those in watermelon CHS, pumpkin CHS, and red pepper CHS. This implied that microbial communities of tomato CHS were stressed more than other species of cultivation soils. Actinomycetes community in red pepper CHS was significantly (p < 0.05) higher than those in tomato CHS, strawberry CHS, and watermelon CHS. Differences in soil microbial community composition were highly associated with cultivated crop species which might result from the management inputs such as fertilizer, herbicide, and irrigation.
Microbial community;Controlled horticulture;Actinomycetes community;FAME;
 Cited by
Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604. crossref(new window)

Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. crossref(new window)

Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. crossref(new window)

Choi, M.T., J.I. Lee, Y.U. Yun, J.E. Lee, B.C. Lee, E.S. Yang, and Y.H. Lee. 2010. Relationship between fertilizer application level and soil chemical properties for strawberry cultivation under greenhouse in Chungnam Province. Korean J. Soil Sci. Fert. 43(2):153-159.

Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.

Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.

Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.

Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. crossref(new window)

Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.

Kim E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice growing stage. Korean J. Soil Sci. Fert. 44:221-227. crossref(new window)

Lee, Y.H., B.K. Ahn, and Y.K. Sonn. 2011a. Effects of electrical conductivity on the soil microbial community in a controled horticultural land for strawberry cultivation. Korean J. Soil Sci. Fert. 44(5):830-835. crossref(new window)

Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. crossref(new window)

Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441. crossref(new window)

Lee, Y.S., J.H. Kang, K.J. Choi, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011b. Response of soil microbial communities to different cultivation systems in controlled horticultural land. Korean J. Soil Sci. Fert. 44(1):118-126. crossref(new window)

Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.

Min, S.G., S.S. Park, and Y.H. Lee. 2011. Comparison of soil microbial communities to different practice for strawberry cultivation in controlled horticultural land. Korean J. Soil Sci. Fert. 44(3):479-484. crossref(new window)

NIAST (National Institute of Agricultural Science and Technology). 2010a. Methods of soil chemical analysis. Suwon, Korea.

NIAST (National Institute of Agricultural Science and Technology). 2010b. Fertilizer recommendation for crops. Suwon, Korea.

Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. crossref(new window)

SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.

Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. crossref(new window)

Yang, S.K., M.K. Kim, Y.W. Seo, K.J. Choi, S.T. Lee, Y.S. Kwak, and Y.H. Lee. 2012. Soil microbial community analysis of between no-till and tillage in a controlled horticultural field. World J. Microbiol. Biotechnol. 28:1797-1801. crossref(new window)

Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. crossref(new window)