JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Solubilization of Inorganic Phosphates and Plant Growth Promotion by Pantoea Strains
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Solubilization of Inorganic Phosphates and Plant Growth Promotion by Pantoea Strains
Walpola, Buddhi Charana; Kong, Won-Sik; Yoon, Min-Ho;
  PDF(new window)
 Abstract
Two phosphate solubilizing Pantoea strains (P. agglomerans and P. rodasii) were employed in elucidating their phosphate solubilizing potential under different carbon and nitrogen sources, pH, temperature and salt conditions. Plant growth promoting characteristics such as ACC deaminase activity, indole acetic acid (IAA), HCN, ammonia, and siderophore production of the two strains were assessed in vitro. Potential applicability of the strains as bio-inoculants was also evaluated in pot experiments conducted under green house conditions. Phosphate solubilization measured as the amount of phosphorous released into the medium was recorded as 810 and respectively by P. agglomerans and P. rodasii. Glucose at the rate of 2% was found be the best carbon source, while was the best nitrogen source for both strains. Despite a slight decrease in phosphate solubilization observed at higher temperature, pH and salt concentrations, both strains could withstand against a range of temperature (), pH (7-9) and the presence of NaCl (up to 5%) without much compromising the phosphate solubilization. Different plant growth promoting traits (ACC deaminase activity, IAA, HCN, ammonia, and siderophore production) of the strains and their ability to promote the growth of green gram seedlings indicate that both strains possess high potential to be used as bio-inoculants.
 Keywords
Pantoea agglomerans;Pantoea rodasii;phosphate solubilization;
 Language
English
 Cited by
1.
Synergistic effect of co-inoculation with phosphate-solubilizing bacteria,;;;;;

농업과학연구, 2016. vol.43. 3, pp.401-414 crossref(new window)
2.
Application of Immobilization Technology in Solubilization of Rock Phosphate,;;;;

한국토양비료학회지, 2014. vol.47. 4, pp.249-253 crossref(new window)
1.
Synergistic effect of co-inoculation with phosphate-solubilizing bacteria, Korean Journal of Agricultural Science, 2016, 43, 3, 401  crossref(new windwow)
2.
Application of Immobilization Technology in Solubilization of Rock Phosphate, Korean Journal of Soil Science and Fertilizer, 2014, 47, 4, 249  crossref(new windwow)
 References
1.
Cappucino, J.C. and N. Sherman. 1992. Microbiolgy: A laboratory manual. Benjamin/Cummings Publishing Company, New York, pp. 125-179.

2.
Cimmino, A., A. Andolfi, G. Marchi, G. Surico, and A. Evindente. 2006. Phytohormone production by strain Pantoea agglomerans from knot on olive plants caused by Pseu-domonas savastanoi pv.savastanoi. Phytopathol. Mediterr. 45:247-252.

3.
Collavino, M.M., P.A. Sansberro, L.A. Mroginski, and O.M. Aguilar. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol. Fert. Soils. 46:727-738. crossref(new window)

4.
Costa, E., J.Usall, N.Teixido, J. Delgado, and I. Vinas. 2002. Water activity, temperature, and pH effects on growth of the biocontrol agent Pantoea agglomerans CPA-2. Can. J. Microbiol. 48:987-992.

5.
Dastager, S.G., C.K. Deepa1, S.C. Puneet, C.S. Nautiyal, and A. Pandey. 2009. Isolation and characterization of plant growth-promoting strain Pantoea NII-186 from Western Ghat forest soil, India. Lett. Appl. Microbiol. doi:10.1111/j.1472-765X.2009.02616.x crossref(new window)

6.
Dave, A. and H.H. Patel. 2003. Impact of different carbon and nitrogen sources on phosphate solubilization by Pseudomonas fluorescens. Indian J. Microbiol. 43:33-36.

7.
Donate-Correa, J., M. Leon-Barrios and R. Perez-Galdona. 2005. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil. 266:261-272. crossref(new window)

8.
Feng, Y., D. Shen, and W. Song. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and effects allocations of host photosynthates. J. App. Microbiol. 100:938-945. crossref(new window)

9.
Gutierrez, C.K., G.Y. Matsui, D.E. Lincoln, and C.R. Lovell. 2009. Production of the phytohormone indole-3-acetic acid by the estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75:2253-2258. crossref(new window)

10.
Jain, R., J. Saxena, and V. Sharma. 2010. The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil-plant system. Appl. Soil Ecol. 46:90-94. crossref(new window)

11.
Kausar, R. and S.M. Hahzad. 2006. Effect of ACC-deaminase Containing Rhizobacteria on Growth Promotion of Maize under Salinity Stress. J. Agri. Soc. Sci. 2:216-218.

12.
Khalim, K., D.N. Suprapta, and Y. Nitta. 2012. Effect of Pantoea agglomerans on growth promotion and yield of rice. Agric. Sci. Res. J. 2:240-249.

13.
Kumar, S., K. Tamura, I.B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 17:1244-1245. crossref(new window)

14.
Lugo, M.A., M. Ferrero, E. Menoyo, M.C. Estevez, F. Sineriz, and A. Anton. 2008. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along a altitudinal gradient in South American Puna grassland. Microb. Ecol. 55:705-713. crossref(new window)

15.
Malboobi, M.A., P. Owlia, M. Behbahani, E. Sarokhani, S. Moradi, B. Yakhchali, A. Deljou, and K.M. Heravi. 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J. Microbiol. Biotechnol. 25:1471-1477. crossref(new window)

16.
Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in mineral waters. Anal. Chim. Acta. 27:31-36. crossref(new window)

17.
Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. crossref(new window)

18.
Nezarat, S. and A. Gholami. 2009. Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize. Pakistan J. Biol. Sci. 12:26-32. crossref(new window)

19.
Payne, S. M. 1994. Detection, isolation and characterization of siderophores. In:Methods Enzymol. 235:329-344. crossref(new window)

20.
Penrose, D.M. and B.R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growthpromoting rhizobacteria. Physiol. Plant. 118:10-15. crossref(new window)

21.
Rahman, M.M., C.M. Escobedo-Bonilla, M. Corteel, J.J. Dantas-Lima, M. Wille, V. Alday Sanz, M.B. Pensaert, P. Sorgeloos, and H.J. Nauwynck. 2006. Effect of high water temperature ($33^{\circ}C$) on the clinical and virological outcome of experimental infections with white spot syndrome virus (WSSV) in specific pathogen-free (SPF) Litopenaeus vannamei. Aquaculture. 261:842-849. crossref(new window)

22.
Relwani, L., P. Krishna, and M.S. Reddy. 2008. Effect of carbon and nitrogen sources on phosphate solubilisation by a wild type strain and UV-induced mutants of Aspergillus tubigensis. Curr. Microbiol. 57:401-406. crossref(new window)

23.
Reyes, I., L. Bernier, and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol. 44:39-48. crossref(new window)

24.
Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.

25.
Saleena, L.M., S. Rangarajan, and S. Nair. 2002. Diversity of Azospirillum strains isolated from rice plants grown in saline and nonsaline sites of coastal agricultural ecosystem. Microb. Ecol. 44:271-277. crossref(new window)

26.
SAS (1999). SAS/STAT User's Guide Version 8. SAS, Cary, NC.

27.
Scervino, J.M., M.P. Mesa, I.D. Monica, M. Recchi, N.S. Moreno, and A. Godeas. 2010. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol. Fertil. Soils. 46:755-763. crossref(new window)

28.
Schwyn, R. and J.B. Neilands. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160:47-56. crossref(new window)

29.
Silini-Cherif, H., A. Silini, M. Ghoul, and S. Yadav. 2012. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans Ima2. Pakistan J. Biol. Sci. 15:267-276 crossref(new window)

30.
Son, H.J., G.T. Park, M.S. Cha, and M.S. Heo. 2006. Solubilization of insoluble inorganic phosphates by a novel salt and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 97:204-210. crossref(new window)

31.
Souchie, E.L., O.J. Saggin-Junior, E.M.R. Silva, E.F.C. Campello, R. Azcon and J.M. Barea. 2006. Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ-Brazil. An Acad. Bras. Cienc. 78:1-11. crossref(new window)

32.
Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. crossref(new window)

33.
Viruel, E., M.E. Lucca, and F. Sineriz. 2011. Plant growth promotion traits of phosphobacteria isolated from puna, Argentina. Arch. Microbiol. 193:489-496 crossref(new window)

34.
Viveros, O.M., M.A. Jorquera, D.E. Crowley, G. Gajardo, and M.L. Mora. 2010. Mechanism and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. plant Nutr. 10:293-319.

35.
Zaidi, A., M.S Khan, and M.D. Amil. 2003. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur. J. Agron. 19:15-21. crossref(new window)