JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province
Kim, Min Keun; Ok, Yong Sik; Heo, Jae-Young; Choi, Si-Lim; Lee, Sang-Dae; Shin, Hyun-Yul; Kim, Je-Hong; Kim, Hye Ran; Lee, Young Han;
  PDF(new window)
 Abstract
Glomalin has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and microbial characteristics in 25 controlled horticultural soils sampled from Gyeongnam Province. Total glomalin had a significant positive correlation with soil organic matter (p < 0.01), soil microbial biomass carbon (p < 0.05), and dehydrogenase activity (p < 0.05) in controlled horticultural soils. In addition, the total glomalin had a significant positive correlation with concentrations of total fatty acid methyl esters, Gram-negative and Gram-positive bacteria, fungi, and arbuscular mycorrhizal fungi in controlled horticultural soils (p < 0.001). In conclusion, the concentration of total glomalin could be an indicator of microbial biomass richness for sustainable agriculture in controlled horticultural soils.
 Keywords
Glomalin;Soil microbial biomass C;Dehydrogenase;Controlled horticulture;
 Language
Korean
 Cited by
 References
1.
Alguacil, M.M., E. Lumini, A. Rolda, J.R. Salinas-Garci, P. Bonfante, and V. Bianciotto. 2008. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol. Appl. 18:527-536. crossref(new window)

2.
Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604. crossref(new window)

3.
Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. crossref(new window)

4.
Casida, L.E., D.A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. Soc. Am. J. 47:599-603.

5.
Choi, M.T., J.I. Lee, Y.U. Yun, J.E. Lee, B.C. Lee, E.S. Yang, and Y.H. Lee. 2010. Relationship between fertilizer application level and soil chemical properties for strawberry cultivation under greenhouse in Chungnam Province. Korean J. Soil Sci. Fert. 43(2):153-159.

6.
Driver, J.D., W.E. Holben, and M.C. Rillig. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 37(1):101-106. crossref(new window)

7.
Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.

8.
Gillespie, A.W., R.E. Farrell, F.L. Walley, A.R.S. Ross, P. Leinweber, K. Eckhardt, T.Z. Regier, and R.I.R. Blyth. 2011. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol. Biochem. 43:766-777. crossref(new window)

9.
Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. crossref(new window)

10.
He, X., Y. Li, and L. Zhao. 2010. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biol. Biochem. 42:1313-1319. crossref(new window)

11.
Jeon, W.T., K.Y. Seong, M.T. Kim, G.J. Oh, I.S. Oh, and U.G. Kang. 2010. Changes of soil physical properties by glomalin concentration and rice yield using different green manure crops in paddy. Korean J. Soil Sci. Fert. 43:119-123.

12.
Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.

13.
Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441. crossref(new window)

14.
Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. crossref(new window)

15.
Lee, Y.H. and S.K. Ha. 2011. Impacts of chemical properties on microbial population from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44:242-247. crossref(new window)

16.
Lee, Y.H., M.K. Kim, and Y.S. Ok. 2012. The relationship between microbial characteristics and glomalin concentrations in paddy soils of Gyeongnam Province. Korean J. Soil Sci. Fert. 45(5):792-797. crossref(new window)

17.
Lee, Y.H., S.T. Lee, M.A. K.P. Hong, S.D. Lee, J.H. Kim, Y.S. Ok, M.K. Kim, and H.R. Kim. 2013. Long-term variations of chemical properties in controlled horticultural soils of Gyeongnam Province. Korean J. Soil Sci. Fert. 46(5):308-312. crossref(new window)

18.
Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Bio. l46:312-318. crossref(new window)

19.
Min, S.G., S.H. Lee, S.H. Nam, Y.U. Choi, S.Y. Lee, S.S. Park, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011. Effect of different cultivation systems on soil glomalin content and nutrient uptake of strawberry in controlled horticultural land. Korean J. Soil Sci. Fert. 44:452-456. crossref(new window)

20.
NIAST. 2010. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea (In Korean).

21.
Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. crossref(new window)

22.
Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84:355-363. crossref(new window)

23.
Rilling, M.C., E.R. Lutgen, P.W. Ramsey, J.N. Klironomos, and J.E. Gannon. 2005. Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251-259. crossref(new window)

24.
Rillig, M.C., P.W. Ramsey, S. Morris, and E.A. Paul. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil volume:293-299.

25.
SAS. 2006. SAS enterprise guide Version 4.1. SAS Inst., Cary, NC.

26.
Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. crossref(new window)

27.
Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19:703-707. crossref(new window)

28.
Vodnik, D., H. Grcman, I. Macek, J.T. van Elteren, and M. Kovacevic. 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci. Total Environ. 392:130-136. crossref(new window)

29.
Wilson, G.W.T., C.W. Rice, M.C. Rillig, A. Springer, and D.C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments. Ecol. Lett. 12:452-I461. crossref(new window)

30.
Wright, S.F. and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from aruscular mycorrhizal fungi. Soil Sci. 161(9): 575-596. crossref(new window)

31.
Wright, S.F. and R.L. Anderson. 2000. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol. Fertil. Soils 31:249-253. crossref(new window)

32.
Wright, S.F., J.L. Starr, and I.C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. 63:1825-1829. crossref(new window)

33.
Wright, S.F., K.A. Nichols, and W.F. Schmidt. 2006. Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere 64:1219-1224. crossref(new window)

34.
Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203. crossref(new window)

35.
Wright, S.F., V.S. Green, and M.A. Cavigelli. 2007. Glomalin in aggregate size classes from three different farming systems. Soil Till. Res. 94:546-549. crossref(new window)

36.
Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. crossref(new window)

37.
Zhang, S., Q. Li, X. Zhang, K. Wei, L. Chen, and W. Liang. 2012. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Till. Res. 124:196-202. crossref(new window)