Advanced SearchSearch Tips
Estimation of Corn Growth by Radar Scatterometer Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of Corn Growth by Radar Scatterometer Data
Kim, Yihyun; Hong, Sukyoung; Lee, Kyoungdo; Na, Sangil; Jung, Gunho;
  PDF(new window)
Ground-based polarimetric scatterometers have been effective tools to monitor the growth of crop with multi-polarization and frequencies and various incident angles. An important advantage of these systems that can be exploited is temporal observation of a specific crop target. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. We analyzed the relationships between L-, C- and X-band signatures, biophysical measurements over the whole corn growth period. The Vertical transmit and Vertical receive polarization (VV) backscattering coefficients for all bands were greater than those of the Horizontal transmit and Horizontal receive polarization (HH) until early-July, and then thereafter HH-polarization was greater than VV-polarization or Horizontal transmit and Vertical receive polarization (HV) until the harvesting stage (Day Of Year, DOY 240). The results of correlation analysis between the backscattering coefficients for all bands and corn growth data showed that L-band HH-polarization (L-HH) was the most suited for monitoring the fresh weight ($r
Polarimetric scatterometer;Corn;Biophysical measurements;Backscattering coefficients;Correlation analysis;
 Cited by
Brakke, T.W., E.T. Kanemasu., J.L. Steine., F.T. Ulaby, and E. Wilson. 1981. Microwave response to canopy moisture, leaf area index, and dry weight of wheat, corn and sorghum. Remote Sens. Environ. 11:207-220. crossref(new window)

Bouvet, A. and T. Le Toan. 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong river delta. Remote Sens. Environ. 115(4):1090-1101. crossref(new window)

Chen, C. and H. McNairn. 2006. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27:1367-1393. crossref(new window)

Denmead, O.T. and R.H. Shaw. 1960. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron. J. 52(5):272-274. crossref(new window)

Inoue, Y., T. Kurosu., H. Maeno, S. Uratsuka., T. Kowu., K. Dabrowska-Zielinska, and J. Qi. 2002. Season-long daily measurements of multi-frequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens. Environ. 81:194-204. crossref(new window)

Kim, S., B. Kim., Y. Kong, and Y.S. Kim. 2000. Radar backscattering measurements of rice crop using X-band scatterometer. IEEE Trans. Geosci. Remote Sens. 38(3):1467-1471. crossref(new window)

Kim, Y.H., S.Y. Hong, and H.Y. Lee. 2009. Estimation of paddy rice growth parameters using L, C, X-bands polarimetric scatterometer. Korean J. Remote Sens. 25(1):31-44.

Kim, Y.H., S.Y. Hong., H.Y. Lee, and J.E. Lee. 2011. Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement. Korean J. Remote Sens. 27(2):191-201. crossref(new window)

Kim, Y.H., S.Y. Hong, K.D. Lee, and S.Y. Jang. 2013. Estimation of wheat growth using a microwave scatterometer. Korean J. Soil Sci. Fert. 46(1):23-31. crossref(new window)

Kurosu, T., M. Fujita, and K. Chiba. 1995. Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans. Geosci. Remote Sens. 33(4):1092-1096. crossref(new window)

Le Toan, T., H. Laur., E. Mougin, and A. Lopes. 1989. Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Trans. Geosci. Remote Sens. 27(6):709-718. crossref(new window)

Le Toan, T., F. Ribbes., L. Wang., F, Ding., N. K., J.A Kong., M. Fujita, and T. Kurosu. 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 35:41-56. crossref(new window)

Lin, H., J. Chen., Z. Pei., S. Zhang, and X. Hu. 2009. Monitoring sugarcane growth using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 47(8):2572-2580. crossref(new window)

Paris, J.F. 1986. The effect of leaf size on the microwave backscattering by corn. Remote Sens. Environ. 19:81-95. crossref(new window)

Shao, Y., X, Fan., H, Lin., J, Xiao., S, Ross., B, Brisco., R, Brown, and G. Staples. 2001. Rice monitoring and production estimation using multi-temporal RADARSAT. Remote Sens. Environ. 76(3):310-325. crossref(new window)

Ulaby, F.T., M.K. Moore, and A.K. Fung. 1982. Microwave Remote Sensing. Active and Passive, Artech House Inc., Norwood, MA, USA.

Ulaby, F.T., C.T. Allen., G. Eger, and E.T. Kanemasu. 1984. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 14:113-133. crossref(new window)

Ulaby, F.T. and C. Elachi. 1990. Radar Polarimetry for Geoscience Applications. Artech House Inc., Norwood, MA, USA.