JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation of Nitrogen Uptake and Yield of Tobacco (Nicotiana tobacum L.) by Reflectance Indices of Ground-based Remote Sensors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of Nitrogen Uptake and Yield of Tobacco (Nicotiana tobacum L.) by Reflectance Indices of Ground-based Remote Sensors
Kang, Seong Soo; Kim, Yoo-Hak; Hong, Soon-Dal;
  PDF(new window)
 Abstract
Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for predicting yield, biomass, and nitrogen stress during growing season. The objectives of this study were: 1) to assess biomass and nitrogen (N) status of tobacco (Nicotiana tabacum L.) plants under N stress using ground-based remote sensors; and 2) to evaluate the feasibility of spectral reflectance indices for estimating an application rate of N and predicting yield of tobacco. Dry weight (DW), N content, and N uptake at the 40th and 50th day after transplanting (DAT) were positively correlated with chlorophyll content and normalized difference vegetation indexes (NDVIs) from all sensors (P<0.01). Especially, Green NDVI (GNDVI) by spectroradiometer and Crop Circle-passive sensors were highly correlated with DW, N content and N uptake. The yield of tobacco was positively correlated with canopy reflectance indices measured at each growth stage (P<0.01). The regression of GNDVI by spectroradiometer on yield showed positively quadratic curve and explained about 90% for the variability of measured yield. The sufficiency index (SI) calculated from data/maximum value of GNDVI at the DAT ranged from 0.72 to 1.0 and showed the same positively quadratic regression with N application rate explaining 84% for the variability of N rate. These results suggest that use of reflectance indices measured with ground-based remote sensors may assist in determining application rate of fertilizer N at the critical season and estimating yield in mid-season.
 Keywords
Canopy reflectance;Ground-based remote sensing;NDVI;N stress;Sufficiency index;Tobacco;
 Language
Korean
 Cited by
 References
1.
Bronson, K.F., T.T. Chua, J.D. Booker, J.W. Keeling, and R.J. Lascano. 2003. In-season nitrogen status sensing in irrigated cotton: II. Leaf nitrogen and biomass. Soil Sci. Soc. Am. J. 67:1439-1448. crossref(new window)

2.
Bundy, L.G. and T.W. Andraski. 1993. Soil and plant nitrogen availability tests for corn following alfalfa. J. Production Agriculture. 6(2):200-206. crossref(new window)

3.
Cater, G.A. and A.K. Knapp. 2001. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany. 88(4):677-684. crossref(new window)

4.
Cater, G.A. and B.A. Spiering. 2002. Optical properties of intact leaves for estimating chlorophyll concentration. J. Environ. Qual. 31:1424-1432. crossref(new window)

5.
Darryl, D.W. 1996. Soil and plant tissue testing for nitrogen availability indexes. Soil Sci. Soc. Am. J. 42:747-750.

6.
Daughtry, C.S.T., K.P. Gallo, S.N. Goward, S.D. Prince, and W.P. Kustas. 1992. Spectral estimates of absorbed radiation and photo-mass production in corn and soybean canopies. Remote Sens. Environ. 39:141-152. crossref(new window)

7.
Fox. R.H., W.P. Piekielek, and K.M. Macneal. 1994. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Commun. Soil Sci. Plant Anal. 25:171-181. crossref(new window)

8.
Girma, K., K.L. Martin, R.H. anderson, D.B. Arnall, K.D. Brixey, M.A. Casillas, B. Chung, B.C. Dobey, S.K. Kamenidou, S.K. Kariuki, E.E. Katsalirou, J.C. Morris, J.Q. Moss, C.T. Rohla, B.J. Sudbury, B.S. Tubana, and W.R. Raun. 2006. Mid-season prediction of wheat-grain yield potential using plant, soil, and sensor measurements. J. of Plant Nutrition. 29:873-897.

9.
Hodgen, P.J., W.R. Raun, G.V. Johnson, R.K. Teal, K.W. Freeman, K.B. Brixey, K.L. Martin, J.B. Solie, and M.L. Stone. 2005. Relationship between response indices measured in-season and at harvest in winter wheat. J. of Plant Nutrition. 28:221-235. crossref(new window)

10.
Hong, S.D. and J.J. Kim. 2003. Agricultural application of ground remote sensing. Korean J. Soil Sci. Fert. 36(2):92-103.

11.
Hussain, F., K.F. Bronson, Yadvinder-Singh, Bijay-Singh, and S. Peng. 2000. Use chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J. 92:875-879.

12.
Kang, S.S., H.C. Jeong, S.H. Jeon, and S.D. Hong. 2009. Evaluation of biomass and nitrogen nutrition of Tobacco under sand culture by reflectance indices of ground-based remote sensors. Korean J. Soil Sci. Fert. 42(2):70-78.

13.
Kim, H.G., S.S. Kang, and S.D. Hong. 2009. Estimation for Red Pepper (Capsicum annum L.) biomass by reflectance indices of ground-based remote sensor. Korean J. Soil Sci. Fert. 42(2): 29-87.

14.
Lihong, X., W. Cao, W. Luo, D. Tingbo, and Zhu. 2004. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 96:135-142. crossref(new window)

15.
Ma, B.L., L.M. Dwyer, C. Costa, E.R. cober, and M.J. Morrison. 2001. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 93:1227-1234. crossref(new window)

16.
McConnell, J.S., W.H. Baker, D.M. Miller, B.S. Frizzell, and J.J. Varvil. 1993. Nitrogen fertilization of cotton cultivars of differing maturity. Agron. J. 85:1151-1156. crossref(new window)

17.
Moges, S.M., W.R. Raun, R.W. Mullen, K.W. Freeman, G.V. Johnson, J.B. Soile. 2004. Evaluation of green, red, and near infrared bands for predicting winter wheat biomass, nitrogen uptake, and final grain yield. Journal of Plant Nutrition. 27(8): 1431-1441.

18.
Mullen, R.W., K.W. Freeman, W.R. Raun, G.V. Johnson, M.L. Stone, and J.B. Solie. 2003. Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agron. J. 95:347-351. crossref(new window)

19.
NIAST. 1988. Fertilizer application recommendations for crop plants, RDA, Suwon, Korea.

20.
Pinter, P.J., R.D. Jackson, C.E. Ezra and H.W. Gausman. 1985. Sun-angle and canopy-architecture effects on the spectral reflectance of six wheat cultivars. INT. J. Remote Sensing. 6(12):1813-1825. crossref(new window)

21.
Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, R.W. Mullen, K.W. Freeman, W.E. Thomason, and E.V. Lukina. 2002. Improving nitrogen use efficiency in cereal grain production with optical sensing variable rate application. Agron. J. 94: 815-820. crossref(new window)

22.
Raun, W.R., J.B. Solie, K.L. Martin, K.W. Freeman, M.L. Stone, G.V. Johnson, and R.W. Mullen. 2005a. Growth stage, development, and spatial variability in corn evaluated using optical sensor readings. J. of Plant Nutrition. 28:173-182. crossref(new window)

23.
Raun, W.R., J.B. Solie, M.L. Stone, K.L. Martin, K.W. Freeman, R.W. Mullen, H. Zhang, J.S. Schepers, and G.V. Johnson. 2005b. Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plan. 36(19/20): 2759-2781. crossref(new window)

24.
Redelfs, M.S., L.R. Stone, E.T. Kanemasu, and M.B. Kirkham. 1987. Greenness-leaf area index relationships for seven rowcrops. Agron. J. 79:254-259. crossref(new window)

25.
Rundquist, D., R. Perk, B. Leavitt, G. Keydan, A. Gitelson. 2004. Collecting spectral data over cropland vegetation using machinepositioning versus hand-positioning of the sensor. Computers and Electronics in Agriculture 43:173-178. crossref(new window)

26.
Sabbe, W.E., and L.J. Zelinski. 1990. Plant analysis as an aid in fertilizing cotton. p. 469-493. In R.L. Westerman(ed.). Soil testing and plant analysis. 3rd ed. SSSA Book Series No. 3. Madison, WI.

27.
Schepers, J.S., D.D. Francis, M. Vigil, and F.E. Below. 1992. Comparison of corn leaf nitrogen concentration and chlorophyll meter reading, Communications in Soil Science and Plant Analysis, 23(17-20):2173-2187. crossref(new window)

28.
Tarpley, L., K.R. Reddy, and G.F. Sassenrath-Cole. 2000. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Sci. 40:1814-1819. crossref(new window)

29.
Teal, R.K., B. Tubana, K. Girma, K.W. Freeman, D.B. Arnall, O. Walsh and W.R. Raun. In-season prediction of corn grain yield potential using normalized difference vegetation index. 2006. Agron. J. 98:1488-1494. crossref(new window)

30.
Varvel, G.E., J.S. Schepers, and D.D. Francis. 1997. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci. Soc. Am. J. 61:1233-1239. crossref(new window)

31.
Wiegand, C.L., A.H. Gerbermann, K.P. Gallo, B.L. Blad, and D. Dusek. 1990. Multisite analyses of spectral-biophysical data for corn. Remote Sens. Environ. 31:1-16. crossref(new window)

32.
Wiegand, C.L., A.J. Richardson, D.E. Escobar, and A.H. Gerbermann. 1991. Vegetation indices in crop assessments. Remote Sensing of Environment 35:105-119. crossref(new window)

33.
Wiegand, C.L., S. J. Maas, J.K. Aase, J.L. Hatfield, P.J. Pinter Jr., R.D. Jackson, E.T. Kanemasu, and R.L. Lapitan. 1992. Multisite analyses of spectral-biophysical data for wheat. Remote Sens. Environ. 42:1-21. crossref(new window)

34.
Xue, L., W. Cao, W. Luo, T. Dai, and Y. Zhu. 2004. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron. J. 96:135-142. crossref(new window)

35.
Yoder, B.J., and R.E. Pettigrew. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra(400-2500nm) at leaf and canopy scales. Remote Sens. Environ. 53:199-211. crossref(new window)