JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimization of Medium Components for the Production of Antagonistic Lytic Enzymes Against Phytopathogenic Fungi and Their Biocontrol Potential
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimization of Medium Components for the Production of Antagonistic Lytic Enzymes Against Phytopathogenic Fungi and Their Biocontrol Potential
Lee, Yong Seong; Neung, Saophuong; Park, Yun Suk; Kim, Kil Yong;
  PDF(new window)
 Abstract
In this paper, fractional factorial screening design (FFSD) and central composition design (CCD) were used to optimize the medium components for producing chitinase and gelatinase by Lysobacter capsici YS1215. Crab shell powder, nutrient broth and gelatin were proved to have significant effects on chitinase and gelatinase activity by FFSD first. An optimal medium was obtained by using a three factor CCD, which consisted of nutrient broth of , crab shell powder of and gelatin of , respectively with the highest chitinase activity () and gelatinase activity (). This value was 3.76 and 1.11 fold of the chitinase and gelatinase activity, respectively, compared to the lowest productive medium in the design matrix. In investigating potential of these enzymes partially purified from L. capsici YS1215 for biotechnological use, the crude enzymes was found to be inhibition against pathogenic fungal mycelia: Colletotrichum gleosporioides, Phytophthora capsici, and Rhizoctonia solani. In this study, we demonstrated the optimal medium for producing the chitinolytic and gelatinolytic enzymes by the strain YS1215 and the role of their enzymes that may be useful for further development of a biotechnological use and agricultural use for biological control of phytopathogenic fungi.
 Keywords
Lysobacter capsici YS1215;Chitinase;Gelatinase;Response surface methodology;Optimization;
 Language
English
 Cited by
 References
1.
Akolkar, A., N. Bharambe, S. Trivedi, and A, Desai. 2009. Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1(1). Lett. Appl. Microbiol. 48:77-83. crossref(new window)

2.
Bird, A.F.and M.A. McClure. 1976. The tylenchid (nematode) egg shell: structure, composition and permeability. Parasitology. 72:19-28. crossref(new window)

3.
Chen, J., W.H. Moore, G.Y. Yuen, D. Kobayashi, and E.P. Caswell-Chen. 2006. Influence of Lysobacter enzymogenes Strain C3 on Nematodes. J. Nematol. 38(2):233-239.

4.
Crini, G., E. Guibal, M. Morcellet, G. Torr, and P.M. Badot. 2009. Chitine et chitosane. Preparation, proprietes et principales applications. In: chitine et chitosane. Du biopolymere a l'application, 1st Ed., Presses universitaires de Franche-Comte, France. p. 19-54.

5.
Ghorbel-Bellaaj, O., L. Manni, K. Jellouli, N. Hmidet, and M. Nasri. 2012. Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design. Biochemical and molecular characterization of the chitinase. Ann. Microbiol. 62:1255-1268. crossref(new window)

6.
Goodrich, J.D. and T.W. Winter. 2007. $\beta$-Chitin Nanocrystals Prepared from shrimp shells and their specific surface area measurement. Biomacromolecules. 8:252-257. crossref(new window)

7.
Gunaraj, V. and N. Murugan. 1999. Application of response surface methodologies for predicting weld base quality in submerged arc welding of pipes. J. Mater. Process Technol. 88:266-275. crossref(new window)

8.
Han, Y., Z. Li, X. Miao, and F. Zhang. 2008. Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochem. 43(10):1088-1093. crossref(new window)

9.
Islam, M.T. 2010. Mode of antagonism of a biocontrol bacterium Lysobacter sp. SB-K88 toward a damping-off pathogen Aphanomyces cochlioides. World J. Microbiol. Biotechnol. 26:629-637. crossref(new window)

10.
Jamilah, B., and K.G. Harvinder. 2002. Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem. 77:81-84. crossref(new window)

11.
Kaushik, R., S. Saran, J. Isar, and R.K. Saxena. 2006. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol.Catal. B.Enzym. 40:121-126. crossref(new window)

12.
Kincl, M., S. Turk, and F. Vrecer. 2005. Application of response surface methodology in development and optimization of drug release method. Int. J. Pharm. 291:39-49. crossref(new window)

13.
Kurita, K. 2006. Chitin and Chitosan: Functional biopolymers from marine crustaceans. Marine.Biotechnol. 8:203-226. crossref(new window)

14.
Lee, Y.S., M. Anees, H.N. Hyun, and K.Y. Kim. 2013. Biocontrol potential of Lysobacter antibioticus HS124 against the root-knot nematode, Meloidogyne incognita, causing disease in tomato. Nematology. 15(5):545-555. crossref(new window)

15.
Liang, T.W., Y.Z. Chen, Y.H. Yen, and S.L. Wang. 2007. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem. 42:527-534. crossref(new window)

16.
Lingappa, Y., and J.L. Lockwood. 1962. Chitin media for selected isolation and culture of actinomycetes. Phytopathology. 52:317-323.

17.
Lopes, M.A., D.S. Gomes, M.G. Koblitz, C.P. Pirovani, J.C. Cascardo, A. Goes-Neto, and F. Micheli. 2008. Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa. Mycol. Res. 112(3): 399-406. crossref(new window)

18.
Mandl, I., J.D. MacLennan, E.L. Howes, R.H. DeBellis, and A. Sohler. 1953.Isolation and characterization of proteinase and collagenase from Cl. Histolyticum. J. Clin. Investig. 32:1323-1329. crossref(new window)

19.
Moore, S., and W.H. Stein. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176:367-388.

20.
Myers, H.M., and D.C. Montgomery. 2002.Response surface methodology: process and product optimization using designed experiments. 2nd Ed. New York: A Wiley inter-science publication.

21.
Nawani, N.N., and B.P. Kapadnis. 2005. Optimization of chitinase production using statistics based experimental designs. Process Biochem. 40(2):651-660. crossref(new window)

22.
Ordentlich, A., Y. Elad, and I. Chet.1988.The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology. 78:84-88.

23.
Pareek, N., R.P. Singh, and S. Ghosh. 2011. Optimization of medium composition for enhanced chitin deacetylase production by mutant Penicillium oxalicum SAEM-51 using response surface methodology under submerged fermentation. Process Biochem. 46(8):1693-1697. crossref(new window)

24.
Park, J.H., R. Kim, Z. Aslam, C.O. Joen, and Y.R. Chung. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int. J. Syst. Evol. Microbiol. 58:387-392. crossref(new window)

25.
Patil, R.S., V. Ghomade, and M.V. Deshpande. 2000. Chitinolytic enzymes: an exploration. Enzym. Microb. Tech. 26:473-483. crossref(new window)

26.
Pelinski, R.P. Cerrutti, M.L. Ponsone, S. Chulze, and M. Galvagno. 2012. Statistical ptimization of simple culture conditions to produce biomass of an ochratoxigenic mould biocontrol yeast strain. Lett. Appl. Microbiol. 54(5):377-382. crossref(new window)

27.
Postma, J., L.H. Stevens, G.L. Wiegers, E. Davelaar, E.H. Nijhuis. 2009. Biological control of Pythium aphanidermarum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan. Biol. Contr. 48:301-309. crossref(new window)

28.
Rattray, F.P., P.F. Fox, and A. Healy.1997.Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine b-casein. Appl. Environmental. Microbiol. 63:2468-2471.

29.
Regev, A., M. Keller, N. Strizhov, B. Sheh, E. Prudovsky, I. Chet, I. Ginzberg, Z. Koncz-Kalman, C. Koncz, J. Schell, and A. Zilberstein. 1996. Synergistic activity of a Bacillus thuringiensis $\delta$-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae Appl. Environ. Microbiol. 62:3581-3586.

30.
Siddiqui, I.A., D. Haas, and S. Heeb. 2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode, Meloidogyne incognita. Appl. Environ. Microbiol. 71:5646-5649. crossref(new window)

31.
Singh, A.K., G. Mehta, and H.S. Chhatpar. 2009. Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Lett. Appl. Microbiol. 49(6):708-14. crossref(new window)

32.
Vaidya, R., P. Vyas, and H.S. Chhatpar. 2003. Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Enzym. Microb. Tech. 33(1):92-96. crossref(new window)

33.
Wang, S.L., P.Y. Yeh. 2006. Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochem. 41:1545-1552. crossref(new window)