Advanced SearchSearch Tips
Characterization of Li+-ion Exchanged Zeolite Y using Organic Solvents
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Li+-ion Exchanged Zeolite Y using Organic Solvents
Kim, Hu Sik; Lee, Seok Hee; Park, Kyun Hye; Park, Yong Hyun; Park, Jun Woo; Hwang, Ji Hyun; Park, Jong Sam; Choi, Sik Young; Lim, Woo Taik;
  PDF(new window)
To investigate the tendency of exchange from polar organic solvents, -ion exchange into zeolite Y (Si/Al
Lithium;Zeolite Y;Ion exchange;Methanol;Formamide;
 Cited by
Arvai, A.J., and C. Nielsen. 1983. ADSC Quantum- 210 ADX Program, Area Detector System Corporation; Poway, CA, USA

Bae, D. and K. Self. 1999. Structures of cobalt(II)-exchanged zeolite X. Micropor. Mesopor. Mater. 33: 265-280. crossref(new window)

Bae, D. and K. Self. 2000. Extensive intrazeolitic hydrolysis of Zn(II): partials structures of partially and fully hydrated Zn(II)-exchanged zeolite X. Micropor. Mesopor. Mater. 40: 233-245. crossref(new window)

Break, D.W. 1974. Zeolite Molecular Sieves, Wiley & Sons, New York. p 93.

Bruker-AXS (ver 6.12), XPREP. 2001. Program for the Automatic Space Group Determination, Bruker AXS Inc., Madison, Wisconsin, USA.

Canfield, G.M., M. Bizimis, and S.E. Latturner. 2007. Sodalite ion exchange in polyethyleneoxide oligomer solvents. J. Mater. Chem. 17: 4530-4534. crossref(new window)

Canfield, G.M., M. Bizimis, and S.E. Latturner. 2010. Transition-Metal ion exchange using poly(ethylene glycol) oligomers as solvents. Chem. Mater. 22: 330- 337. crossref(new window)

Cromer, D.T. 1965. Anomalous dispersion corrections computed from self-consistent field relativistic dirac-slater wave functions. Acta Crystallogr. 18: 17-23. crossref(new window)

Doyle, P.A., and P.S. Turner. 1968. Relativistic hartree-fock X-ray and electron scattering factors. Acta Crystallogr. Sect. A. 24: 390-397. crossref(new window)

Feuerstein, M., and R.F. Lobo. 1998. Characterization of Li cations in zeolite LiX by solid-satate NMR spectroscopy and neutron diffraction. Chem. Mater. 10: 2197-2204. crossref(new window)

Feuerstein, M., R.J. Accardi, and R.F. Lobo. 2000. Adsorption of nitrogen and oxygen in the zeolite LiA and LiX investigated by $^6Li$ and $^7Li$ MAS NMR spectroscopy. J. Phy. Chem. B. 104: 10282-10287. crossref(new window)

Forano, C., R.C.T. Slade, E. Krogh Andersen, I.G. Krogh Andersen, and E. Prince. 1989. Neutron diffraction determination of full structures of anhydrous Li-X and Li-Y zeolites. J. Solid State Chem. 82: 95-102. crossref(new window)

Freude, D., S. Beckert, F. Stallmach, R. Kurzhals, D. Taschner, H. Toufar, J. Karger, and J. Haase. 2013. Ion and water mobility in hydrated Li-LSX zeolite studied by $^1H$, $^6Li$ and $^7Li$ NMR spectroscopy and diffusometry. Micropor. Mesopor. Mater.172: 174-181. crossref(new window)

Herden, H., W.D. Einicke, R. Scholler, W.J. Mortier, L.R. Gellens, and J.B. Uytterhoeven. 1982. Location of Li-ions in synthetic zeolites X and Y. Zeolite. 2: 131-134. crossref(new window)

Ho, K.H., H.S. Lee, B.C. Leano, T. Sun, and K. Seff. 1995. Failure of ion exchange into zeolites A and X from four diverse nonaqueous solvents. Zeolites. 15: 377-381. crossref(new window)

Ibers, J.A., and W.C. Hamilton. 1974a. International Tables for X-ray Crystallography, Vol. IV (Kynoch Press, Birmingham, England), pp. 71-98.

Ibers, J.A., and W.C. Hamilton. 1974b. International Tables for X-ray Crystallography, Vol. IV (Kynoch Press, Birmingham, England), pp. 148-150.

Kim, H.S., D. Bae, W.T. Lim, and K. Seff. 2012a. $Li^+$ exchange into zeolite Na-Y (FAU) from aqueous methanol. Single-crystal structures of fully dehydrated Li, Na-Y. J. Phy. Chem. C. 116: 9009-9018. crossref(new window)

Kim, H.S., S.O. Ko, and W.T. Lim. 2012b. Single-crystal structures of $Li^+$-exchanged zeolite X (FAU, Si/Al = 1.09) from aqueous solution depends on ion-exchange temperatures at 293 and 333 K. Bull. Korean Chem. Soc. 33: 3303-3310. crossref(new window)

Kim, H.S., S.Y. Choi, and W.T. Lim. 2013a. Complete $Li^+$ exchange into zeolite X (FAU, Si/Al =1.09) from undried methanol solution. J. Porous Mater. 20: 1449-1456. crossref(new window)

Kim, H.S., J.S. Park, J.J. Kim, J.M. Suh, and W.T. Lim. 2013b. $Li^+$-exchanged zeolites X and Y (FAU) from undried formamide solution. Korean J. Soil Sci. Fert. 46: 260-269. crossref(new window)

Lee, Y.M., G.H. Jeong, Y. Kim, and K. Seff. 2005. Single crystal structure of fully dehydrated, excessively $Cd^{2+}$- exchanged zeolite Y, ${\mid}Cd_{27.5}(Cd_8O_4)_2{\mid}[Si_{121}Al_{71}O_{384}]$-FAU, containing $Cd_8O_4{^8+}$ clusters. Micropor. Mesopor. Mater. 88: 105-111.

Lide, D.R. 1996/1997a. Handbook of Chemistry and Physics, 77th ed., CRC Press: Boca Raton, FL, p. 12-14.

Lide, D.R. 1996/1997b. Handbook of Chemistry and Physics, 77th ed., CRC Press: Boca Raton, FL, p. 6-152.

Lim, W.T., S.Y. Choi, J.H. Choi, Y.H. Kim, N.H. Heo, and K. Seff. 2006. Single-crystal structure of fully dehydrated fully $K^+$-exchanged zeolite Y (FAU), $K_{71}Si_{121}Al_{71}O_{384}$. Micropor. Mesopor. Mater. 92: 234-242. crossref(new window)

Lim, W.T., S.M. Seo, L.Z. Wang, G.Q. Lu, N.H. Heo, and K. Seff. 2010. Single-crystal structures of highly $NH_4{^+}$- exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Micropor. Mesopor. Mater. 129: 11-21. crossref(new window)

Loewenstein, W. 1954. The distribution of aluminum in the tetrahedral of silicates and aluminates. Am. Mineral. 39: 92-96.

Olson, D.H. 1995. The crystal structure of dehydrated NaX. Zeolites. 15: 439-443. crossref(new window)

Otwinowski, Z., and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. crossref(new window)

Plevert, J., F. Di Renzo, F. Fajula, and G. Chiari. 1997. Structure of dehydrated zeolite Li-LSX by neutron diffraction: Evidence for a low-temperature orthorhombic faujasite. J. Phys. Chem. B. 101: 10340-10346. crossref(new window)

Ronay, C., and K. Seff. 1985. Crystal structure of lead ($Pb_6$)- A and lead hydroxide hydrate ($Pb_9(OH)_8(H_2O)_3$)-A. Zeolite A ion exchanged with lead(2+) at pH 4.3 and 6.0 and evacuated. J. Phys. Chem. 89: 1965-1970. crossref(new window)

Ronay, C., and K. Self. 1993. Lead oxide hydroxide clusters in $Pb_9O(OH)_4-A$, zeolite A exchanged with $Pb^{2+}$ at Ph 6.0. Zeolites. 13: 97-101. crossref(new window)

Seo, S.M., W.T. Lim, and K. Seff. 2012a. Crystallographic verification that Copper(II) coordinates to four of the oxygen atoms of zeolite 6-rings. Two single-crystal structures of fully dehydrated, largely $Cu^{2+}$-exchanged zeolite Y (FAU, Si/Al = 1.56). J. Phys. Chem. C. 116: 963-974. crossref(new window)

Seo, S.M., W.T. Lim, and K. Seff. 2012b. Single-crystal structures of fully and partially dehydrated zeolite Y (FAU, Si/Al = 1.56) $Ni^{2+}$ exchanged at a low pH, 4.9. J. Phys. Chem. C. 116: 13985-13996. crossref(new window)

Sheldrick, G.M. 1997. SHELXL97, Program for the Refinement of Crystal Structures. University of Gottingen, Germany.

Shepelev, Y.F., A.A. Anderson, and Y.I. Smolin. 1990. Crystal structure of a partially lithium-exchanged X zeolite in hydrated ($25^{\circ}C$) and dehydrated ($275^{\circ}C$) states. Zeolites. 10: 61-63. crossref(new window)

Van Bekkum, H., E.M. Flanigen, P.A. Jacobs, and J.C. Jansen. 2001. Introduction to Zeolites Science and Practice. Elsevier. p 44.

Weast, R.V. 1989/1990. Handbook of Chemistry and Physics, 70th ed., The chemical Rubber Co.: Cleveland, OH, p. F-187.

Wozniak, A., B. Marler, K. Angermund, and H. Gies. 2008. Water and cation distribution in fully and partially hydrated Li-LSX zeolite. Chem. Mater. 20: 5968-5976. crossref(new window)

Zhu, J., N. Mosey, T. Woo, and Y. Huang. 2007. Study of the adsorption of toluene in zeolite LiNa-Y by Solid-State NMR spectroscopy. J. Phys. Chem. C. 111: 13427-13436. crossref(new window)

Zhu, L., and K. Seff. 1999. Reinvestigation of the crystal structure of dehydrated sodium zeolite X. J. Phys. Chem. B. 103: 9512-9518.