JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Isolation and Biocontrol Potential of Bacillus amyloliquefaciens Y1 against Fungal Plant Pathogens
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Isolation and Biocontrol Potential of Bacillus amyloliquefaciens Y1 against Fungal Plant Pathogens
Jamal, Qaiser; Lee, Yong Seong; Jeon, Hyeon Deok; Park, Yun Suk; Kim, Kil Yong;
  PDF(new window)
 Abstract
This study was performed to investigate thermophilic bacteria from soil having broad antifungal spectrum against Rhizoctonia solani, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f.sp. lycopersici, and Botrytis cinerea. One isolate selected could resist heat shock of for one hour, and had broad antifungal activity in dual culture assay against all tested fungal pathogens and was identified as Bacillus amyloliquefaciens Y1 using 16S rRNA gene sequence. Further investigation for antifungal activity of bacterial culture filtrate (BCF) and butanol crude extract (BCE) of various concentrations showed broad spectrum antifungal activity and fungal growth inhibition significantly increased with increasing concentration with highest growth inhibition of 100% against R. solani with 50% BCF and 11 mm of zone of inhibition against R. solani with 4 mg BCE concentration. Treatment of butanol crude extract resulted in deformation, lysis or degradation of C. gloeosporioides and P. capsici hyphae. Furthermore, B. amyloliquefaciens Y1 produced volatile compounds inhibiting growth of R. solani (70%), C. gloeosporioides (65%) and P. capsici (65-70%) when tested in volatile assay. The results from the study suggest that B. amyloliquefaciens Y1 could be a biocontrol candidate to control fungal diseases in crops.
 Keywords
Thermophilic bacteria;Dual culture assay;Bacterial crude extract;Crude extract;Volatile assay;
 Language
English
 Cited by
1.
Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat,;;;;;;

한국토양비료학회지, 2016. vol.49. 4, pp.393-400 crossref(new window)
1.
Purification and antifungal characterization of Cyclo ( D -Pro- L - Val) from Bacillus amyloliquefaciens Y1 against Fusarium graminearum to control head blight in wheat, Biocatalysis and Agricultural Biotechnology, 2017, 10, 141  crossref(new windwow)
 References
1.
Agrios, N.A. 1988. Plant Pathology. 3rdEdn., Academic press, USA. pp.220-222.

2.
Baker, K. F., and R. J. Cook. 1982. Biological control of plant pathogens. The American Phytopathological Society, Saint Paul, Minnesota. 433.

3.
Baker, K.F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85. crossref(new window)

4.
Sarosh, B.R., and J.J. Danielsson, Meijer Transcript profiling of oil seed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea Plant Mol. Biol., 70 (2009), pp.31-45. crossref(new window)

5.
Chen, X., H. Koumoutsi, A. Scholz, and R. Borriss. 2009 More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol. 16:14-24. crossref(new window)

6.
Cho, S., J. Lee, S.K. Cha, B.J. Kim, and K.S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiology Letters. 223:47-51. crossref(new window)

7.
Choudhary, D.K., and B.N. Johri. 2009. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR).Microbiol. Res. 164:493-513. crossref(new window)

8.
Cook, R.K. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. crossref(new window)

9.
Ehtesmul-Haque, S., and A. Ghaffar. 1993. Use of rhizobia in the control of root rots diseases of subflower, okra, soyabean and mungbean. J. Phytoathology. 138:157-163. crossref(new window)

10.
Esterio, M., J. Auger, C. Ramos, A.S. Walker, G. Munoz, and S. Fillinger, 2009. Botrytis en uva de mesa de exportacion: Situacion actual de sensibilidad a fungicidas en Chile. Rev. Aconex, 103:16-23

11.
Ezra, D., W. M. Hess, and G.A. Strobel. 2004. New endophytic isolates of Muscodoralbus, a volatile-antibiotic-producing fungus.Microbiol. 150:4023-4031. crossref(new window)

12.
Fernando, W.G.D., R. Ramarathnam, A.S. Krishnamoorthy, and S.C. Savchuk. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil BiolBiochem 37:955-964 crossref(new window)

13.
Danielsson, J., O. Reva, and J. Meijer. 2007. Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant associated Bacillus amyloliquefaciens Microb. Ecol., 54:134-140 crossref(new window)

14.
Kai, M., U. Effmert, G. Berg, and B. Piechulla. 2006. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol 157:351-360

15.
Korenblum, E., I. von der Wied, A.L.S. Santos, A.S. Roasdo, G.V. Sebastian, C.M.L.M. Coutinho, F.C.M. Magalhaes, M.M. De Paiva, and L. Seldin. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B.firmis H20-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. App. Microbiol. 98:667-675. crossref(new window)

16.
Lee, J.Y., H.W. Jung, and B.K. Hwang. 2005. Streptomyces koyangensis sp. nov., a novel actinomycete that produces 4-phenyl-3-butenoic acid. International J. Syst. Evol. Microbiol. 55:257-262. crossref(new window)

17.
Mao, S., S.J. Lee, H. Hwangbo, Y.W. Kim , K.H. Park, G.S. Chan, R.D. Park, and K.Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53:358-364. crossref(new window)

18.
McSpadden, B.B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathol. 94:1252-1258. crossref(new window)

19.
Michielse, C.B, and M. Rep. 2009.Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10:311-324 crossref(new window)

20.
Naing, K.W., M. Aness, S.J. Kim., Y. Nam, Y.C. Kim, and K.Y. Kim. 2014. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann. Microbiol. 64:55-63. crossref(new window)

21.
Niazi, A., S. Manzoor, S. Asari, J. Bejai, J. Meijer, and E. Bongcam-Rudloff. 2014. Genome analysis of Bacillus amyloliquefaciens subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. PLoS One 9 (8), e104651. crossref(new window)

22.
Prusky, D. 1996. Pathogen quiescence in postharvest diseases. Annu. Rev. Phytopathol. 34, 413-434. crossref(new window)

23.
Raza W., X. Yang, H. Wu, Y. Wang, Y. Xu, and Q. Shen. 2009. Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur. J Plant Pathol 125:471-483 crossref(new window)

24.
Rini, C.R., and K.K, Sulchana. 2007. Usefulness of Trichoderma spp. and florescent Pseudomonas (Pseudomonas fluorescence) against Rhizoctonia solani and Fusarium oxysporum infecting tomato. J. Trop. Agric. 44:79-82

25.
Sang, M.K., S.C. Chun, and K.D. Kim. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control. 46:424-433. crossref(new window)

26.
Scholefield, P., and J. Morison. 2010. Assessment of Economic Cost of Endemic Pests and Diseases on the Australian Grape and Wine Industry. Adelaide, Australia: Grape and Wine Research and Development Corporation.

27.
Souto, G.I., O.S. Correa, M.S. Montechhia, N.L. Kerber, N.L. Pucheu, M. Bachur, and A.F. Garcia. 2004. Genetic and functional characterization of a Bacillus sp. Strain execrating surfactin and antifungal metabolite partially identified as iturin -like compounds. J. App. Microbiol. 97:1247-1256. crossref(new window)