JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Prediction of Andong Reservoir Inflow Using Ensemble Technique
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Prediction of Andong Reservoir Inflow Using Ensemble Technique
Kang, Min Suk; Yu, Myungsu; Yi, Jaeeung;
  PDF(new window)
 Abstract
In this study, Andong Reservoir monthly and ten days inflows from July 2011 to September 2011 are predicted using SWAT model and ensemble technique. The weight method using monthly and ten days rainfall forecasts from Korea Meteorological Administration is applied for accurate analysis. If the rainfall prediction announced by Korea Meteorological Administration is close to the actual rainfall, the PDF-Ratio Method shows the best result. If the past high rainfall occurrence is close to the actual rainfall, the modified PDF-Ratio method shows the best result. This method can improve the prediction accuracy even though the Korea Meteorological Administration forecast is not accurate. On the contrary, if Korea Meteorological Administration forecast is different from the actual rainfall and the past rainfall occurrence statistics of lower section, the uniform method shows the best result.
 Keywords
ESP;SWAT Model;PDF-Ratio;Andong reservoir;
 Language
Korean
 Cited by
1.
앙상블 기법을 적용한 대표 수위관측망 구축,주홍준;이지호;전환돈;김형수;

한국방재학회 논문집, 2016. vol.16. 5, pp.273-283 crossref(new window)
1.
A Study on Optimal Stage Gauge Network Considering Correlation of Individual Stage Gauge Station, Journal of Wetlands Research, 2016, 18, 4, 404  crossref(new windwow)
 References
1.
Ahn, J. M., Lee, S. J., Kim, J. K., Kim, J. C., Maeng, S. J. and Woo, D. H. (2011). "Estimation of ESP probability considering weather outlook." Journal of Korea Society on Water Quality, Vol. 27, pp. 264-272 (in Korean).

2.
Bradley, A. A., Schwartz, S. S. and Hashino, T. (2003). "Distributions-Oriented verification of ensemble streamflow predictions." Journal of Hydrometeorology, Vol. 5, pp. 532-545.

3.
Faber, B. A. (2000). Reservoir optimization using sampling stochastic dyamic programming (SSDP) with ensemble streamflow prediciton (ESP) forecasts, Ph.D. Dissertation, University of Cornell, America.

4.
Franz, K. J., Hartmann, H. C., Sorooshian, S. and Bales, R. (2003). "Verification of national weather service ensemble streamflow predictions for water supply forecasting in the Colorado river basin." Journal of Hydrometeorology, Vol. 4, pp. 1105-1118. crossref(new window)

5.
Jung, D. I. (2002). Forecasting monthly inflow to Chungju Dam using ensemble streamflow prediction, MS. Thesis, University of Seoul, Korea.

6.
Kang, T. H. (2008). Pre- and post-processors of ensemble streamflow prediction system, MS. Thesis, University of Seoul, Korea.

7.
Olsson, J. and Lindstrom, G. (2008). "Evaluation and calibration of operational hydrological ensemble forecasts in Sweden." Journal of Hydrology, Vol. 350, pp. 14-24. crossref(new window)

8.
Roulin, E. (2006). "Skill and relative economic value of medium-range hydrological ensemble predictions." Hydrol. Earth Syst. Sci. Discuss., 3, pp. 1369-1406. crossref(new window)

9.
Smith, J. A., Day, G. N. and Kane, M. D. (1992). "Nonparametric framework for long-range streamflow forecasting." Journal of Water Resources Planning and Management, ASCE, Vol. 118, pp. 82-92. crossref(new window)

10.
Stedinger, J. R., Vogel, R. M. and Foufoula-Georgiou, E. (1992). Handbook of hydrology, McGraw-Hill, p. 1811.

11.
Stedinger, J. R. and Kim, Y. O. (2010). "Probabilities for ensemble forecasts reflecting climate information." Journal of Hydrology, Vol. 391, pp. 9-23. crossref(new window)

12.
Wilks, D. S. (1995). Forecast verification : Statistical Methods in the Atmospheric Sciences, Academic Press, USA