Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction

- Journal title : Journal of The Korean Society of Civil Engineers
- Volume 34, Issue 5, 2014, pp.1463-1476
- Publisher : Korean Society of Civil Engeneers
- DOI : 10.12652/Ksce.2014.34.5.1463

Title & Authors

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction

Lee, Woo-Dong; Hur, Dong-Soo;

Lee, Woo-Dong; Hur, Dong-Soo;

Abstract

In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Keywords

Wave-current interaction;Morphological change;3-D coupled Hydro-Morphodynamic model;Suspended sediment concentration;

Language

Korean

Cited by

1.

2.

3.

References

1.

Bagnold, R. A. (1954). "Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear." Proc. R. Soc. Lond., Vol. 225, pp. 49-63.

2.

Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354.

3.

Cheng, N. S. (2008). "Formulas for friction factor in transitional regimes." J. Hydr. Eng., ASCE, Vol. 134, pp. 1357-1362.

4.

Cheng, N. S. and Chiew, Y. M. (1998). "Modified logarithmic law for velocity distribution subjected to upward seepage." J. Hydr. Eng., ASCE, Vol. 124, pp. 1235-1241.

5.

Cummins, S. J., Francois, M. M. and Kothe, D. B. (2005). "Estimating curvature from volume fractions." Comput. Struct., Vol. 83, pp. 425-434.

6.

de Brye, B., de Brauwere, A., Gourgue, O., Karna, T., Lambrechts, J., Comblen R. and Deleersnijder, E. (2010). "A finite-element, multi-scale model of the Scheldt tributaries, River, Estuary and ROFI." Coastal Eng., Vol. 57, pp. 850-863.

7.

Donnell, J. O. (1997). "Observations of near-surface currents and hydrography in the connecticut river plume with the surface current and density array." J. Geophys. Res., Vol. 102, No. C11, pp. 25021-25033.

8.

Einstein, H. A. and Chien, N. (1955). "Effects of heavy sediment concentration near the bed on velocity and sediment distribution." U.S. Army Engineer Division, Missouri River, M.R.D. Sediment Series, No. 8, p. 78.

9.

Ergun, S. (1952). "Fluid flow through packed columns." Chemical Eng., Vol. 48, No. 2, pp. 89-94.

10.

Farhanieh, B., Firoozabadi, B. and Rad, M. (2001). "The propagation of turbulent density currents on sloping beds." Scientia Iranica, Vol. 8, pp. 130-137.

11.

Ford, D. E. and Johnson L. S. (1986). An assessment of reservoir mixing process, Technical Re. E-86-7, U.S. Army Engineers Waterways Experiment Station, Vicksburg, p. 147.

12.

Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765.

13.

Gill, A. E. (1982). "Atmosphere-ocean dynamics." Academic Press, New York.

14.

Herbers, T. H. and Jansen, T. T. (2010). Wave-current interaction in coastal inlets and river mouths, Annual Rept. Naval Postgraduate School, Monterey, CA. Dept. of Oceanography.

15.

Hur, D. S., Lee, W. D. and Bae, K. S. (2008). "On reasonable boundary condition for inclined seabed/structure in case of the numerical model with quadrilateral mesh system." Korean Society of Civil Engineers, KSCE, Vol. 28, pp. 591-594 (in Korean).

16.

Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116.

17.

Ibrahim, Z. and Latiff, A. A. A., Aziz and Halim, A. H. A., Bakar, N. A. and Subramaniam, S. (2008). "Experimental studies on mixing salt wedge estuary." Malaysian J. Civil Eng., Vol. 20, No. 2, pp. 188-199.

18.

Iwasaki, T. and Sato, M. (1970). "Energy damping of wave propagating against currents." Proc. Coastal Eng. Conf., JSCE, Vol. 17, pp. 41-46 (in Japanese).

19.

Iwasaki, T. and Sato, M. (1971). "Energy damping of wave propagating against currents (II)." Proc. Coastal Eng. Conf., JSCE, Vol. 18, pp. 55-60 (in Japanese).

20.

Kim, K. H., Lee, H. J. and Kim, W. S. (2008). "The local scour around submarine pipelines in the interaction region combined with waves and currents." Korean Society of Coastal and Ocean Eng., Vol. 20, No. 5, pp. 510-521 (in Korean).

21.

Lambe, T. W. and Whitman, R. V. (1969). Soil mechanics, John Wiley & Sons, Inc., New York, p. 553.

22.

Lee, K. H. and Mizutani, N. (2007). "Wave-current interaction for waves propagating against currents." Int. J. Offshore and Polar Eng., Vol. 17, No. 4, pp. 259-265.

23.

Lee, W. D. and Hur, D. S. (2014). "Development of 3-D hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." J. Korean Society of Civil Eng., Vol. 34, No. 3, pp. 859-871 (in Korean).

24.

Lee, W. D., Hur, D. S. and Goo, N. H. (2014). "A numerical study on tsunami tun-up heights on impermeable/permeable slope." J. Korean Society of Coastal Disaster Prevention, Vol. 1, No. 1, pp. 1-9 (in Korean).

25.

Lee, W. D., Mizutani, N. and Hur, D. S. (2011). "Effect of crossing angle on interaction between wave and current in the river mouth." J. Japan Society of Civil Eng., Ser. B3 (Ocean Eng.), Vol. 67, pp. 256-261 (in Japanese).

26.

Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M. and Stelling, G. S. (2004). "Development and validation of a three-dimensional morphological model." Coastal Eng., Vol. 51, pp. 883-915.

27.

Liang, B., Zhao, H., Li, H. and Wu, G. (2012). "Numerical study of three-dimensional wave-induced longshore current's effects on sediment spreading of the Huanghe River mouth." Acta Oceanologica Sinica, Vol. 31, No. 2, pp. 129-138.

28.

Lilly, D. K. (1991). "A proposed modification of the Germano subgrid-scale closure method." Phy. Fluids, Vol. 4, pp. 633-635.

29.

Liu, S. and Masliyah, J. H. (1999). "Non-linear flows porous media." J. Non-Newtonian Fluid Mech., Vol. 86, pp. 229-252.

30.

Nguyen, X. T., Tanaka, H. and Nagabayashi, H. (2007). "Wave setup at river and inlet entrances due to an extreme event." Proc. Int. Conf. on Violent Flows.

31.

Petersen, T. U., Sumer, B. M. and Fredsoe, J. (2012). "Time scale of scour around a pile in combined waves and current." Proc. 6 th Int. Conf. on Scour and Erosion.

32.

Riley, J. P. and Skirrow, G. (1965). "Chemical oceanography." Academic Press, Vol. 3.

33.

Roulund, A., Sumer, B. M., Fredsoe, J. and Michelsen, J. (2005). "Numerical and experimental investigation of flow and scour around a circular pile." J. Fluid Mech., Vol. 534, pp. 351-401.

34.

Sakakiyama, T. and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwater." Proc. 23rd Int. Conf. on Coastal Eng., ASCE, Venice, pp. 1517-1530.

35.

Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q. and Kennedy, A. (2001). "A fully nonlinear Boussinesq model in generalized curvilinear coordinates." Coastal Eng., Vol. 42, pp. 337-358.

36.

Smagorinsky, J. (1963). "General circulation experiments with the primitive equation." Mon. Weath. Rev., Vol. 91, No. 3, pp. 99-164.

37.

Smith, J. M., Seabergh, W. C., Harkins, G. S. and Briggs, M. J. (1998). Wave breaking on a current at an idealized inlet, Rept. CHL-98-31, US Army Corps of Engineers.

38.

Soulsby, R. L. (1997). Dynamics of marine sands, Thomas Relford Publications, p. 249.

39.

Soulsby, R. L. and Whitehouse, R. J. S. W. (1997). "Threshold of sediment motion in coastal environments." Proc. Pacific Coasts and Ports '97 Conf., Vol. 1, pp. 149-154.

40.

Sutherlanda, J., Walstrab, D. J. R., Cheshera, T. J., van Rijn, L. C. and Southgate, H. N. (2004). "Evaluation of coastal area modelling systems at an estuary mouth." Coastal Eng., Vol. 51, pp. 119-142.

41.

Tanaka, H., Nagabayashi, H. and Yamauchi, K. (2000). "Observation of wave set-up height in a river mouth." Proc. 27th Int. Conf. on Coastal Eng., ICCE, pp. 3458-3471.

42.

Umeyama, M. (2005). "Reynolds stresses and velocity distributions in a wave-current coexisting environment." J. Waterway, Port, Coastal, Ocean Eng., Vol. 131, pp. 203-212.

43.

van Rijn, L. C. (1984a). "Sediment transport, Part I: Bed load transport." J. Hydr. Eng., ASCE, Vol. 110, pp. 1431-1456.

44.

van Rijn, L. C. (1984b). "Sediment transport, Part II: Suspended load transport." J. Hydr. Eng., ASCE, Vol. 110, pp. 1613-1641.

45.

van Rijn, L. C. and Walstra, D. J. R. (2003). "Modelling of sand transport in DELFT3D." WL Delft Hydr. Re. Vol. Z3624, Delft Hydr., The Netherlands.

46.

Xiong, Y. (2010). Coupling sediment transport and water quality models, Ph.D. Thesis, Mississippi State Univ., USA, p. 275.

47.

Young, Y. L. and Xiao, H. (2008). "Enhanced sediment transport due to wave-soil interactions." Proc. NSF Eng. Res. and Innovation Conf., Knoxville, Tennessee.

48.

Zhang, Q. H., Tan, F., Han, T., Wang, X. Y., Hou, Z. Q. and Yang, H. (2010). "Simulation of sorting sedimentation in the channel of Huanghua harbor by using 3d multi-sized sediment transport model of EFDC." Proc. Int. 32nd Conf. on Coastal Eng., ICCE, No. 32.