JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction
Lee, Woo-Dong; Hur, Dong-Soo;
  PDF(new window)
 Abstract
In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.
 Keywords
Wave-current interaction;Morphological change;3-D coupled Hydro-Morphodynamic model;Suspended sediment concentration;
 Language
Korean
 Cited by
1.
Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation, Journal of The Korean Society of Civil Engineers, 2016, 36, 5, 831  crossref(new windwow)
2.
Applicability of Permeable Submerged Breakwater for Discharged Flow Control, Journal of Korea Water Resources Association, 2016, 49, 1, 51  crossref(new windwow)
3.
Numerical Simulation of Local Scour in Front of Impermeable Submerged Breakwater Using 2-D Coupled Hydro-morphodynamic Model, Journal of Ocean Engineering and Technology, 2016, 30, 6, 484  crossref(new windwow)
4.
Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction, Journal of The Korean Society of Civil Engineers, 2016, 36, 4, 645  crossref(new windwow)
 References
1.
Bagnold, R. A. (1954). "Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear." Proc. R. Soc. Lond., Vol. 225, pp. 49-63. crossref(new window)

2.
Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354. crossref(new window)

3.
Cheng, N. S. (2008). "Formulas for friction factor in transitional regimes." J. Hydr. Eng., ASCE, Vol. 134, pp. 1357-1362. crossref(new window)

4.
Cheng, N. S. and Chiew, Y. M. (1998). "Modified logarithmic law for velocity distribution subjected to upward seepage." J. Hydr. Eng., ASCE, Vol. 124, pp. 1235-1241. crossref(new window)

5.
Cummins, S. J., Francois, M. M. and Kothe, D. B. (2005). "Estimating curvature from volume fractions." Comput. Struct., Vol. 83, pp. 425-434. crossref(new window)

6.
de Brye, B., de Brauwere, A., Gourgue, O., Karna, T., Lambrechts, J., Comblen R. and Deleersnijder, E. (2010). "A finite-element, multi-scale model of the Scheldt tributaries, River, Estuary and ROFI." Coastal Eng., Vol. 57, pp. 850-863. crossref(new window)

7.
Donnell, J. O. (1997). "Observations of near-surface currents and hydrography in the connecticut river plume with the surface current and density array." J. Geophys. Res., Vol. 102, No. C11, pp. 25021-25033. crossref(new window)

8.
Einstein, H. A. and Chien, N. (1955). "Effects of heavy sediment concentration near the bed on velocity and sediment distribution." U.S. Army Engineer Division, Missouri River, M.R.D. Sediment Series, No. 8, p. 78.

9.
Ergun, S. (1952). "Fluid flow through packed columns." Chemical Eng., Vol. 48, No. 2, pp. 89-94.

10.
Farhanieh, B., Firoozabadi, B. and Rad, M. (2001). "The propagation of turbulent density currents on sloping beds." Scientia Iranica, Vol. 8, pp. 130-137.

11.
Ford, D. E. and Johnson L. S. (1986). An assessment of reservoir mixing process, Technical Re. E-86-7, U.S. Army Engineers Waterways Experiment Station, Vicksburg, p. 147.

12.
Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765. crossref(new window)

13.
Gill, A. E. (1982). "Atmosphere-ocean dynamics." Academic Press, New York.

14.
Herbers, T. H. and Jansen, T. T. (2010). Wave-current interaction in coastal inlets and river mouths, Annual Rept. Naval Postgraduate School, Monterey, CA. Dept. of Oceanography.

15.
Hur, D. S., Lee, W. D. and Bae, K. S. (2008). "On reasonable boundary condition for inclined seabed/structure in case of the numerical model with quadrilateral mesh system." Korean Society of Civil Engineers, KSCE, Vol. 28, pp. 591-594 (in Korean).

16.
Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. crossref(new window)

17.
Ibrahim, Z. and Latiff, A. A. A., Aziz and Halim, A. H. A., Bakar, N. A. and Subramaniam, S. (2008). "Experimental studies on mixing salt wedge estuary." Malaysian J. Civil Eng., Vol. 20, No. 2, pp. 188-199.

18.
Iwasaki, T. and Sato, M. (1970). "Energy damping of wave propagating against currents." Proc. Coastal Eng. Conf., JSCE, Vol. 17, pp. 41-46 (in Japanese).

19.
Iwasaki, T. and Sato, M. (1971). "Energy damping of wave propagating against currents (II)." Proc. Coastal Eng. Conf., JSCE, Vol. 18, pp. 55-60 (in Japanese).

20.
Kim, K. H., Lee, H. J. and Kim, W. S. (2008). "The local scour around submarine pipelines in the interaction region combined with waves and currents." Korean Society of Coastal and Ocean Eng., Vol. 20, No. 5, pp. 510-521 (in Korean).

21.
Lambe, T. W. and Whitman, R. V. (1969). Soil mechanics, John Wiley & Sons, Inc., New York, p. 553.

22.
Lee, K. H. and Mizutani, N. (2007). "Wave-current interaction for waves propagating against currents." Int. J. Offshore and Polar Eng., Vol. 17, No. 4, pp. 259-265.

23.
Lee, W. D. and Hur, D. S. (2014). "Development of 3-D hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." J. Korean Society of Civil Eng., Vol. 34, No. 3, pp. 859-871 (in Korean). crossref(new window)

24.
Lee, W. D., Hur, D. S. and Goo, N. H. (2014). "A numerical study on tsunami tun-up heights on impermeable/permeable slope." J. Korean Society of Coastal Disaster Prevention, Vol. 1, No. 1, pp. 1-9 (in Korean).

25.
Lee, W. D., Mizutani, N. and Hur, D. S. (2011). "Effect of crossing angle on interaction between wave and current in the river mouth." J. Japan Society of Civil Eng., Ser. B3 (Ocean Eng.), Vol. 67, pp. 256-261 (in Japanese).

26.
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M. and Stelling, G. S. (2004). "Development and validation of a three-dimensional morphological model." Coastal Eng., Vol. 51, pp. 883-915. crossref(new window)

27.
Liang, B., Zhao, H., Li, H. and Wu, G. (2012). "Numerical study of three-dimensional wave-induced longshore current's effects on sediment spreading of the Huanghe River mouth." Acta Oceanologica Sinica, Vol. 31, No. 2, pp. 129-138. crossref(new window)

28.
Lilly, D. K. (1991). "A proposed modification of the Germano subgrid-scale closure method." Phy. Fluids, Vol. 4, pp. 633-635.

29.
Liu, S. and Masliyah, J. H. (1999). "Non-linear flows porous media." J. Non-Newtonian Fluid Mech., Vol. 86, pp. 229-252. crossref(new window)

30.
Nguyen, X. T., Tanaka, H. and Nagabayashi, H. (2007). "Wave setup at river and inlet entrances due to an extreme event." Proc. Int. Conf. on Violent Flows.

31.
Petersen, T. U., Sumer, B. M. and Fredsoe, J. (2012). "Time scale of scour around a pile in combined waves and current." Proc. 6 th Int. Conf. on Scour and Erosion.

32.
Riley, J. P. and Skirrow, G. (1965). "Chemical oceanography." Academic Press, Vol. 3.

33.
Roulund, A., Sumer, B. M., Fredsoe, J. and Michelsen, J. (2005). "Numerical and experimental investigation of flow and scour around a circular pile." J. Fluid Mech., Vol. 534, pp. 351-401. crossref(new window)

34.
Sakakiyama, T. and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwater." Proc. 23rd Int. Conf. on Coastal Eng., ASCE, Venice, pp. 1517-1530.

35.
Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q. and Kennedy, A. (2001). "A fully nonlinear Boussinesq model in generalized curvilinear coordinates." Coastal Eng., Vol. 42, pp. 337-358. crossref(new window)

36.
Smagorinsky, J. (1963). "General circulation experiments with the primitive equation." Mon. Weath. Rev., Vol. 91, No. 3, pp. 99-164. crossref(new window)

37.
Smith, J. M., Seabergh, W. C., Harkins, G. S. and Briggs, M. J. (1998). Wave breaking on a current at an idealized inlet, Rept. CHL-98-31, US Army Corps of Engineers.

38.
Soulsby, R. L. (1997). Dynamics of marine sands, Thomas Relford Publications, p. 249.

39.
Soulsby, R. L. and Whitehouse, R. J. S. W. (1997). "Threshold of sediment motion in coastal environments." Proc. Pacific Coasts and Ports '97 Conf., Vol. 1, pp. 149-154.

40.
Sutherlanda, J., Walstrab, D. J. R., Cheshera, T. J., van Rijn, L. C. and Southgate, H. N. (2004). "Evaluation of coastal area modelling systems at an estuary mouth." Coastal Eng., Vol. 51, pp. 119-142. crossref(new window)

41.
Tanaka, H., Nagabayashi, H. and Yamauchi, K. (2000). "Observation of wave set-up height in a river mouth." Proc. 27th Int. Conf. on Coastal Eng., ICCE, pp. 3458-3471.

42.
Umeyama, M. (2005). "Reynolds stresses and velocity distributions in a wave-current coexisting environment." J. Waterway, Port, Coastal, Ocean Eng., Vol. 131, pp. 203-212. crossref(new window)

43.
van Rijn, L. C. (1984a). "Sediment transport, Part I: Bed load transport." J. Hydr. Eng., ASCE, Vol. 110, pp. 1431-1456. crossref(new window)

44.
van Rijn, L. C. (1984b). "Sediment transport, Part II: Suspended load transport." J. Hydr. Eng., ASCE, Vol. 110, pp. 1613-1641. crossref(new window)

45.
van Rijn, L. C. and Walstra, D. J. R. (2003). "Modelling of sand transport in DELFT3D." WL Delft Hydr. Re. Vol. Z3624, Delft Hydr., The Netherlands.

46.
Xiong, Y. (2010). Coupling sediment transport and water quality models, Ph.D. Thesis, Mississippi State Univ., USA, p. 275.

47.
Young, Y. L. and Xiao, H. (2008). "Enhanced sediment transport due to wave-soil interactions." Proc. NSF Eng. Res. and Innovation Conf., Knoxville, Tennessee.

48.
Zhang, Q. H., Tan, F., Han, T., Wang, X. Y., Hou, Z. Q. and Yang, H. (2010). "Simulation of sorting sedimentation in the channel of Huanghua harbor by using 3d multi-sized sediment transport model of EFDC." Proc. Int. 32nd Conf. on Coastal Eng., ICCE, No. 32.