JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model
Son, In Ho; Kim, Byunghyun; Son, Ah Long; Han, Kun Yeun;
  PDF(new window)
 Abstract
This study presents the analysis of flood and bed deformation caused by reservoir failure. The CCHE1D is used to simulate 1D non-uniform, non-equilibrium sediment transport and bed deformation. The CCHE1D deals with the adaptation length for non-equilibrium sediment, classified sediment particle for non-uniform sediment and mixing layer for the exchange with the sediment moving with the flow. The model is applied to Ha!Ha! river basin where was experienced reservoir failure in 1996 to analyze non-uniform and non-equilibrium sediment transport. The calculations are compared with morphological bed changes of pre- and post-flood. In addition, model sensitivity to main parameters involving adaptation length (), non-equilibrium coefficient (), mixing layer thickness () and porosity (p`) is analyzed. The results indicates that thalweg change is the most sensitive to non-equilibrium coefficient () among those parameters in the study area.
 Keywords
CCHE1D;Reservoir failure;Bed change;Non-uniform sediment;Non-equilibrium sediment transport;
 Language
Korean
 Cited by
 References
1.
Ahn, J. and Yang, C. T. (2014). "Simulation of lateral migration of all American canal with semi-two dimensional sediment transport model." KSCE Journal of Civil Engineering, Vol. 18, No. 6, pp. 1896-1903. crossref(new window)

2.
Ahn, J. and Yang, C. T. (2015). "Determination of recovery factor for simulation of non-equilibrium sedimentation in reservoir." International Journal of Sediment Research, Vol. 39, No. 1, pp. 68-73.

3.
Ahn, J. and Yen, H. (2015). "Semi-two dimensional numerical prediction of non-equilibrium sediment transport in reservoir using stream tubes and theory of minimum stream power." KSCE Journal of Civil Engineering, Vol. 19, No. 6, pp. 1922-1929. crossref(new window)

4.
Ahn, J., Yang, C. T., Boyd, P. M., Pridal, D. B. and Remus, J. I. (2013). "Numerical modeling of sediment flushed from lewis and clark lake." International Journal of Sediment Research, Vol. 28, No. 2, pp. 182-193. crossref(new window)

5.
Ahn, J. M. and Lyu S. W. (2013). "Analysis of flow and bed change on hydraulic Structure using CCHE2D : Focusing on Changnyong-Haman." Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 707-717 (In Korean). crossref(new window)

6.
Brooks, G. R. and Lawrence, D. E. (1999). "The drainage of the Lake Ha!Ha! reservoir and downstream geomorphic impacts along Ha!Ha! River, Saguenay area, Quebec, Canada." Geomorphology, Vol. 28, No. 1-2, pp. 141-167. crossref(new window)

7.
Capart, H., Spinewine, B., Young, D. L., Zech, Y., Brooks, G. R., Leclerc, M. and Secretan, Y. (2007). "The 1996 lake Ha! Ha! breakout flood, quebec: Test data for geomorphic flood routing methods." Journal of Hydraulic Research, Vol. 45, Extra Issue, pp. 97-109. crossref(new window)

8.
Choi, B. H. (2015). Disaster Risk Analysis and Management Improvement Plans of Agricultural Reservoirs, Master's Thesis, Kyungpook National University, Daegu, Korea (in Korean).

9.
CSTGB (Commission scientifique et technique sur la gestion des barrages) (1997). Rapport: Commission scientifique et technique sur la gestion des barrages. Quebec, Janvier 1997, p. 241.

10.
Davies, A. G., van Rijn, L. C., Damgaard, J. S., van de Graaff, Jand J. and Ribberink, J. S. (2002), "Intercomparison of research and practical sand trans-port models." Coastal Engineering, Vol. 46, No. 1, pp. 1-23. crossref(new window)

11.
Ding, Y. and Altinakar, M. S. (2015). "Simulation and control of morphological changes due to dam removal in the Sandy River, Oregon, USA." Proceedings of the International Association of Hydrological Sciences, No. 367, pp. 207-214.

12.
El kadi Abderrezzak, K. and Paquier, A. (2009). "One-dimensional numerical modeling of sediment transport and bed deformation in open channels." Water Resources Research, Vol. 45, No. 5, W05404.

13.
Garbrecht, J., Kuhnle, R. and Alonso, C. (1995). "A sediment transport capacity formulation for application to large channel networks." Journal of Soil and Water Conservation, Vol. 50, No. 5, pp. 527-529.

14.
Gessese, A. and Yonas, M. (2008). "Prediction of sediment inflow to Legedadi reservoir using SWAT Watershed and CCHE1D." Nile Basin Water Engineering Scientific Magazine, Vol. 1, pp. 65-74.

15.
Hwang, S. D., Choi, S. H., Lee, S. J. and Jang, C. L. (2013). "Long-term riverbed change simulation and analisys in the river." Journal of Korea Spatial information Society, Vol. 21, No. 5. pp. 1-6 (In Korean).

16.
INRS-Eau (1997). Simulation hydrodynamique et bilan sedimentaire des rivières Chicoutimi et des Ha!Ha! suite aux crues exceptionnelles de juillet 1996. Rapport INRS-Eau No. R487, Travaux realises pour le compte de la Commission scientifique et technique sur la gestion des barrages, p. 207.

17.
Jeong, W. J., Ji, U. and Yeo, W. K. (2010). "Sensitivity analysis of bed changes for different sediment transport formulas using the HEC-6 model -The lower nakdong river." Journal of the Environmental Sciences, Vol. 19, No. 10, pp. 1219-1227 (In Korean). crossref(new window)

18.
Proffitt, G. T. and Sutherland, A. J. (1983). "Transport of non-uniform sediments." Journal of Hydraulic Research, Vol. 21, No. 1, pp. 33-43. crossref(new window)

19.
Son, A. L., Kim, B. H., Moon, B. R. and Han, K. S. (2015). "An analysis of bed change characteristics by bed protection work." Journal of the Korean Society of Civil Engineer, Vol. 35, No. 4, pp. 821-834 (In Korean). crossref(new window)

20.
Son, I. H., Kim, B. H. and Han, K. Y. (2015). "Flood risk analysis considering the sediment transport in a river." Proceedings of the Korea Water Resources Association Conference, Gosung, Korea, pp. 132 (In Korean).

21.
Wu, W. (2008). Computational River Dynamics, Taylor & Francis Group, London, UK.

22.
Wu, W. and Vieira, D. A. (2002). One-dimensional channel network model CCHE1D version 3.0-Technical manual. Technical report No. NCCHE-TR-2002-1. National Center for Computational Hydroscience and Engineering, The University of Mississippi, Oxford, MS.

23.
Wu, W. and Wang, S. (2008). "Simulation of morphological evolution near sediment mining pits using a 1-D mixed-regime flow and sediment transport model." World Environmental and Water Resources Congress, pp. 1-10.

24.
Wu, W., Wang, S. S. Y. and Jia, Y. (2000). "Nonuniform sediment transport in alluvial rivers." Journal of Hydraulic Research, Vol. 38, No. 6, pp. 427-434. crossref(new window)