JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Current Photovoltaic Research
  • Volume 4, Issue 2,  2016, pp.64-67
  • Publisher : Korea Photovoltaic Society
  • DOI : 10.21218/CPR.2016.4.2.064
 Title & Authors
Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays
Kim, Sujung; Cho, Yunae; Sohn, Ahrum; Kim, Dong-Wook;
  PDF(new window)
 Abstract
We investigated the influences of Ag nanoparticle (NP) arrays and surface nanohole (NH) patterns on the optical characteristics of 10--thick c-Si wafers using finite-difference time-domain (FDTD) simulations. In particular, we comparatively studied the plasmonic effects of both monomer arrays (MA) and heptamer arrays (HA) consisting of identical Ag NPs. HA improved the optical absorption of the c-Si wafers in much wider wavelength range than MA, with the help of hybridized plasmon modes. The light trapping capability of the NH array pattern is superior to that of the Ag plasmonic NPs. We also found that the addition of the Ag HA on the wafers with surface NH patterns further enhanced optical absorption: the expected short-circuit current density was as high as .
 Keywords
Light trapping;Ultrathin c-Si;Plasmonic nanoparticle;Nanohole;
 Language
Korean
 Cited by
 References
1.
A. Mavrokefalos, S. E. Han, S. Yerci, M. S. Branham, and G. Chen, "Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications", Nano Lett. 12, pp. 2792-2796, 2012. crossref(new window)

2.
Y. Kwon, C. Yang, S.-H. Yoon, H.-D. Um, J.-H. Lee, and B. Yoo, "Spalling of a thin Si layer by electrodeposit-assisted stripping", Appl. Phys. Exp. 6, p. 116502, 2013. crossref(new window)

3.
Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, "Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications", Nanoscale 6, pp. 9568-9573, 2014. crossref(new window)

4.
K. J. Yu, L. Gao, J. S. Park, Y. R. Lee, C. J. Corcoran, R. G. Nuzzo, D. Chanda, and J. A. Rogers, "Light trapping in ultrathin monocrystalline silicon solar cells", Adv. Energy Mater. 3, pp. 1401-1406 (2013). crossref(new window)

5.
E. Lee, K. Zhou, M. Gwon, J.-Y. Jung, J.-H. Lee, and D.-W. Kim, "Beneficial roles of Al back reflectors in optical absorption of Si nanowire array solar cells", J. Appl. Phys. 114, p. 093516, 2013. crossref(new window)

6.
Y. Chen, W. Han, and F. Yang, "Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles", Opt. Lett. 38, pp. 3973-3975, 2013. crossref(new window)

7.
E. D. Palik, "Handbook of optical constants of solids III", Academic Press, New York, 1998.

8.
P. B. Johnson and R. W. Christy, "Optical constants of the noble metals", Phys. Rev. B, 6, pp. 4370-4379, 1972. crossref(new window)

9.
H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices", Nat. Mater. 9, pp. 205-213, 2010. crossref(new window)

10.
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, "Transition from isolated to collective modes in plasmonic oligomers", Nano Lett. 10, pp. 2721-2726, 2010. crossref(new window)

11.
H. Jo, D. Yoon, A. Sohn, D.-W. Kim, Y. Choi, T. Kang, D. Choi, S.-W. Kim, and L. P. Lee, "Asymmetrically coupled plasmonic core and nanotriplet satellites", J. Phys. Chem. C, 118, pp. 18659-18667, 2014. crossref(new window)