JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Degradation and Stability of Organic-Inorganic Perovskite Solar Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Current Photovoltaic Research
  • Volume 4, Issue 2,  2016, pp.68-79
  • Publisher : Korea Photovoltaic Society
  • DOI : 10.21218/CPR.2016.4.2.068
 Title & Authors
Degradation and Stability of Organic-Inorganic Perovskite Solar Cells
Cho, Kyungjin; Kim, Seongtak; Bae, Soohyun; Chung, Taewon; Lee, Sang-won; Lee, Kyung Dong; Lee, Seunghun; Kwon, Guhan; Ahn, Seh-Won; Lee, Heon-Min; Ko, Min Jae; Kang, Yoonmook; Lee, Hae-seok; Kim, Donghwan;
  PDF(new window)
 Abstract
The power conversion efficiency of perovskite solar cells has remarkably increased from 3.81% to 22.1% in the past 6 years. Perovskite solar cells, which are based on the perovskite crystal structure, are fabricated using organic-inorganic hybrid materials. The advantages of these solar cells are their low cost and simple fabrication procedure. Also, they have a band gap of about 1.6 eV and effectively absorb light in the visible region. For the commercialization of perovskite solar cells in the field of photovoltaics, the issue of their long term stability cannot be overlooked. Although the development of perovskite solar cells is unprecedented, their main drawback is the degradation of the perovskite structure by moisture. This degradation is accelerated by exposure to UV light, temperature, and external bias. This paper reviews the aforesaid reasons for perovskite solar cell degradation. We also discuss the research directions that can lead to the development of perovskite solar cells with high stability.
 Keywords
Perovskite solar cell;Stability;Degradation;Moisture;UV light;Temperature;Voltage;
 Language
Korean
 Cited by
 References
1.
Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7):506-514. crossref(new window)

2.
Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A., & Guloy, A. M. (1995). Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science, 267(5203):1473-1476. crossref(new window)

3.
Mitzi, D. B., Chondroudis, K., & Kagan, C. R. (2001). Organicinorganic electronics. IBM journal of research and development, 45(1):29-45. crossref(new window)

4.
NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed April 19, 2016).

5.
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17):6050-6051. crossref(new window)

6.
Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10):4088-4093. crossref(new window)

7.
Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Gratzel, M. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2.

8.
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 338(6107):643-647. crossref(new window)

9.
Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., ... & Gratzel, M. (2013). Efficient inorganic- organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6):486-491. crossref(new window)

10.
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters, 13(4):1764-1769. crossref(new window)

11.
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Gratzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature,

12.
Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467):395-398. crossref(new window)

13.
Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature materials, 13(9):897-903. crossref(new window)

14.
Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535):476-480. crossref(new window)

15.
Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240):1234-1237. crossref(new window)

16.
Hwang, I., Jeong, I., Lee, J., Ko, M. J., & Yong, K. (2015). Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS applied materials & interfaces, 7(31):17330-17336. crossref(new window)

17.
Chen, Q., De Marco, N., Yang, Y. M., Song, T. B., Chen, C. C., Zhao, H., ... & Yang, Y. (2015). Under the spotlight: The organic- inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10(3):355-396. crossref(new window)

18.
Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., Van Schilfgaarde, M., & Walsh, A. (2014). Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters, 14(5):2584-2590. crossref(new window)

19.
Niu, G., Li, W., Meng, F., Wang, L., Dong, H., & Qiu, Y. (2014). Study on the stability of $CH_3NH_3PbI_3$ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2(3):705-710. crossref(new window)

20.
Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., & Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized $TiO_2$ with meso-superstructured organometal tri-halide perovskite solar cells. Nature communications, 4.

21.
Ito, S., Tanaka, S., Manabe, K., & Nishino, H. (2014). Effects of surface blocking layer of $Sb_2S_3$ on nanocrystalline $TiO_2$ for $CH_3NH_3PbI_3$ perovskite solar cells. The Journal of Physical Chemistry C, 118(30):16995-17000. crossref(new window)

22.
Guo, X. D., Dong, H. P., Li, W. Z., Li, N. & Wang, L. D. "Multifunctional MgO Layer in Perovskite Solar Cells." Chemphyschem 16, 1727-1732, (2015). crossref(new window)

23.
http://www.iec.ch/

24.
Han, Yu, et al. "Degradation observations of encapsulated planar $CH_3NH_3PbI_3$ perovskite solar cells at high temperatures and humidity." Journal of Materials Chemistry A 3.15 (2015):8139-8147. crossref(new window)

25.
Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D'Haen, J., D'Olieslaeger, L., ... & Angelis, F. D. (2015). Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 5(15).

26.
Deretzis, I., Alberti, A., Pellegrino, G., Smecca, E., Giannazzo, F., Sakai, N., ... & La Magna, A. (2015). Atomistic origins of $CH_3NH_3PbI_3$ degradation to $PbI_2$ in vacuum. Applied Physics Letters, 106(13):131904. crossref(new window)

27.
Zhang, Y. Y., Chen, S., Xu, P., Xiang, H., Gong, X. G., Walsh, A., & Wei, S. H. (2015). Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor $CH_3NH_3PbI_3$. arXiv preprint arXiv:1506.01301.

28.
Ganose, A. M., Savory, C. N., & Scanlon, D. O. (2015). $(CH_3NH_3)_2Pb(SCN)_2I_2$: A More Stable Structural Motif for Hybrid Halide Photovoltaics?. The journal of physical chemistry letters, 6(22):4594-4598. crossref(new window)

29.
Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568. crossref(new window)

30.
Liu, J., Pathak, S., Stergiopoulos, T., Leijtens, T., Wojciechowski, K., Schumann, S., ... & Snaith, H. J. (2015). Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. The journal of physical chemistry letters, 6(9):1666-1673. crossref(new window)

31.
Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3):982-988. crossref(new window)

32.
Li, X., Dar, M. I., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S. M., ... & Gratzel, M. (2015). Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ${\omega}$-ammonium chlorides. Nature chemistry.

33.
Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568. crossref(new window)

34.
Malinauskas, T., Tomkute-Luksiene, D., Sens, R., Daskeviciene, M., Send, R., Wonneberger, H., ... & Getautis, V. (2015). Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS applied materials & interfaces, 7(21):11107-11116 crossref(new window)

35.
Li, M. H., Hsu, C. W., Shen, P. S., Cheng, H. M., Chi, Y., Chen, P., & Guo, T. F. (2015). Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 51(85):15518-15521. crossref(new window)

36.
Shi, J., Dong, J., Lv, S., Xu, Y., Zhu, L., Xiao, J., ... & Meng, Q. (2014). Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters, 104(6):063901. crossref(new window)

37.
Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic $CH_3NH_3PbI_3/TiO_2$ heterojunction solar cells with carbon counter electrode. Scientific reports, 3.

38.
Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., ... & Ma, T. (2014). Hole-conductor-free, metal-electrode-free $TiO_2/CH_3NH_3PbI_3$ heterojunction solar cells based on a lowtemperature carbon electrode. The journal of physical chemistry letters, 5(18):3241-3246. crossref(new window)

39.
Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., ... & Gratzel, M. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194):295-298. crossref(new window)

40.
Li, X., Tschumi, M., Han, H., Babkair, S. S., Alzubaydi, R. A., Ansari, A. A., ... & Gratzel, M. (2015). Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics. Energy Technology, 3(6):551-555. crossref(new window)

41.
Unger, E. L., Hoke, E. T., Bailie, C. D., Nguyen, W. H., Bowring, A. R., Heumuller, T., ... & McGehee, M. D. (2014). Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 7(11):3690-3698. crossref(new window)

42.
Snaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., ... & Zhang, W. (2014). Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, 5(9):1511-1515. crossref(new window)

43.
Brivio, F., Walker, A. B., & Walsh, A. (2013). Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Apl Materials, 1(4):042111. crossref(new window)

44.
Blank, H., & Amelinckx, S. (1963). Direct observation of ferroelectric domains in barium titanate by means of the electron microscope. Applied Physics Letters, 2(7):140-142. crossref(new window)

45.
Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Gratzel, M. (2015). Understanding the rate-dependent J-V hysteresis, slow time component, and aging in $CH_3NH_3PbI_3$ perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3):995-1004. crossref(new window)

46.
Zhang, Y., Liu, M., Eperon, G. E., Leijtens, T. C., McMeekin, D., Saliba, M., ... & Johnston, M. B. (2015). Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Materials Horizons, 2(3):315-322 crossref(new window)

47.
Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. H. (2015). Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites. Angewandte Chemie, 127(6):1811-1814. crossref(new window)

48.
Azpiroz, J. M., Mosconi, E., Bisquert, J., & De Angelis, F. (2015). Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8(7):2118-2127. crossref(new window)

49.
Eames, C., Frost, J. M., Barnes, P. R., O'regan, B. C., Walsh, A., & Islam, M. S. (2015).

50.
Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2015). First-principles study of ion diffusion in perovskite solar cell sensitizers. Journal of the American Chemical Society, 137(32):10048-10051. crossref(new window)

51.
Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., ... & Huang, J. (2015). Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature materials, 14(2):193-198. crossref(new window)

52.
Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., & Huang, J. (2015). Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 5(15).

53.
Leijtens, T., Hoke, E. T., Grancini, G., Slotcavage, D. J., Eperon, G. E., Ball, J. M., ... & McGehee, M. D. (2015). Mapping Electric Field-Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 5(20).