Advanced SearchSearch Tips
Modeling flow instability of an Algerian sand with the dilatancy rule in CASM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Geomechanics and Engineering
  • Volume 9, Issue 6,  2015, pp.729-742
  • Publisher : Techno-Press
  • DOI : 10.12989/gae.2015.9.6.729
 Title & Authors
Modeling flow instability of an Algerian sand with the dilatancy rule in CASM
Ramos, Catarina; Fonseca, Antonio Viana da; Vaunat, Jean;
The aim of the present work was the study of instability in a loose sand from Les Dunes beach in Ain Beninan, Algeria, where the Boumerdes earthquake occurred in 2003. This earthquake caused significant structural damages and claimed the lives of many people. Damages caused to infrastructures were strongly related to phenomena of liquefaction. The study was based on the results of two drained and six undrained triaxial tests over a local sand collected in a region where liquefaction occurred. All the tests hereby analyzed followed compression stress-paths in monotonic conditions and the specimens were isotropically consolidated, since the objective was to study the instability due to static loading as part of a more general project, which also included cyclic studies. The instability was modeled with the second-order work increment criterion. The definition of the instability line for Les Dunes sand and its relation with yield surfaces allowed the identification of the region of potential instability and helped in the evaluation of the susceptibility of soils to liquefy under undrained conditions and its modeling. The dilatancy rate was studied in the points where instability began. Some mixed tests were also simulated, starting with drained conditions and then changing to undrained conditions at different time steps.
constitutive model;critical state;flow liquefaction;instability of sands;
 Cited by
Andrade, J.E. (2009), "A predictive framework for liquefaction instability", Geotechnique, 59(8), 673-682. crossref(new window)

Andrade, J.E., Ramos, A.M. and Lizcano, A. (2013), "Criterion for flow liquefaction instability", Acta Geotechnica, 8(5), 525-535 crossref(new window)

Arroyo, M., Amaral, M.F., Romero, E. and Viana da Fonseca, A. (2013), "Isotropic yielding of unsaturated cemented silty sand", Can. Geotech. J., 50(8), 807-819. crossref(new window)

Bazant, Z. and Cedolin, L. (1991), Stability of Structures. Elastic, Inelastic, Fracture and Damage Theories, Dover Publications, Mineola, NY, USA.

Bedin, J., Schnaid, F., Viana da Fonseca, A. and Costa-Filho, L. (2012), "Gold tailings liquefaction using critical state soil mechanics concepts", Geotechnique (ICE), 62(3), 263-267. crossref(new window)

Been, K. and Jefferies, M.G. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. crossref(new window)

Borja, R.I. (2006), "Condition for liquefaction instability in fluid saturated granular soils", Acta Geotechnica, 1(4), 211-224. crossref(new window)

Coussy, O., Pereira, J.M. and Vaunat, J. (2010), "Revisiting the thermodynamics of hardening plasticity for unsaturated soils", Comput. Geotech., 37(1), 207-215. crossref(new window)

Dafalias, Y.F. and Manzari, M.T. (2004), "Simple plasticity sand model accounting for fabric change effects", J. Eng. Mech., 130(6), 622-633. crossref(new window)

Gonzalez, N.A. (2011), "Development of a family of constitutive models for Geotechnical applications", Ph.D. Dissertation; UPC, Barcelona, Spain.

Hill, R. (1958), "A general theory of uniqueness and stability in elastic-plastic solids", J. Mech, Phys. Solids, 6(3), 236-249.

Jeremic, B., Cheng, Z., Taiebat, M. and Dafalias, Y. (2008), "Numerical simulation of fully saturated porous material", Int. J. Numer. Anal. Meth. Eng., 32(13), 1635-1660. crossref(new window)

Kim, M.K. and Lade, P.V. (1988), "Single hardening constitutive model for frictional materials, I. Plastic potencial function", Comput. Geotech., 5(4), 307-324. crossref(new window)

Lade, P.V. (1992), "Static instability and liquefaction of loose fine sandy slopes", J. Geotech. Eng., 118(1), 51-71. crossref(new window)

Lade, P.V. (1994), "Instability and liquefaction of granular materials", Comput. Geotech., 16(2), 123-151. crossref(new window)

Lade, P.V. and Yamamuro, J.A. (2011), "Evaluation of static liquefaction potential of silty sand slopes", Can. Geotech. J., 48(2), 247-264. crossref(new window)

Lade, P.V., Yamamuro, J.A. and Liggio, C.D. Jr. (2009), "Effects of fines content on void ratio, compressibility and static liquefaction of silty sand", Geomech. Eng., Int. J., 1(1), 1-15. crossref(new window)

Manzari, M.T., Dafalias, Y.F. (1997), "A critical state two-surface plasticity model for sands", Geotechnique, 47(2), 255-272. crossref(new window)

Olivella, S. and Vaunat, J. (2006), "Application of Code_Bright_GiD to geotechnical problems", Proceedings of the 3rd GiD Conference, Barcelona, Spain, March, p.10.

Pinheiro, A. (2009), "Laboratory evaluation of the status conditions that led to phenomena of liquefaction of dune sands in the 2003 earthquake in Boumerdes", Master Thesis; FEUP, Porto, Portugal. [In Portuguese]

Pinyol, N., Vaunat, J. and Alonso, E.E. (2007), "A constitutive model for soft clayey rocks that include weathering effect", Geotechnique, 57(2), 137-151. crossref(new window)

Ramos, A.M. (2010), "Instability in Sands", Ph.D. Dissertation; Faculty of Engineering Universidad de los Andes, Bogota, Colombia.

Ramos, C. (2013), "Modelling sand instability within the framework of critical state soil mechanics", Master Thesis; FEUP, Porto, Portugal.

Rios, S., Viana da Fonseca, A. and Baudet, B.A. (2012), "The effect of the porosity/cement ratio on the compression of cemented soil", J. Geotech. Geoenviron. Eng., 138(11), 1422-1426. crossref(new window)

Rios, S., Viana da Fonseca, A. and Baudet, B.A. (2013), "On the shearing behaviour of an artificially cemented soil", Acta Geotechnica, 9(2), 215-226. DOI: 10.1007/s11440-013-0242-7

Rocha, J. (2010), "Definition of liquefaction in triaxial conditions in the light of the theory of critical states and assessment of risk by reason of seismic waves velocities on a dune sand", Master Thesis; FEUP, Porto, Portugal. [In Portuguese]

Roscoe, K.H. and Burland, J.B. (1968), "On the generalized stress-strain behaviour of wet clay", Eng. Plast., 535-609.

Roscoe, K.H., Schofield, A.N. and Wroth, C.P. (1958), "On the yielding of soils", Geotechnique, 8(1), 22-53. crossref(new window)

Rowe, P.W. (1962), "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", Proc. Roy. Soc., 269(1339), 500-527. crossref(new window)

Sadrekarimi, A. and Olson, S.M. (2011), "Yield strength ratios, critical strength ratios, and brittleness of sandy soils from laboratory tests", Can. Geotech. J., 48(3), 493-510. crossref(new window)

Schnaid, F., Bedin, J., da Fonseca, A. and Filho, L. (2013), "Stiffness and strength governing the static liquefaction of tailings", J. Geotech. Geoenviron. Eng., 139(12), 2136-2144. crossref(new window)

Soares, M., Bedin, J., Silva, J. and Viana da Fonseca, A. (2011), "Monotonic and cyclic liquefaction assessment on silty soils by triaxial tests with bender elements", Proceedings of International Conference in Advances in Geotechnical Engineering, Perth, Australia, November, Volume 1, pp. 819-826.

Taiebat, M. and Dafalias, Y.F. (2008), "SANISAND: simple anisotropic sand plasticity model", Int. J. Numer. Anal. Meth. Geomech., 32(8), 915-948. crossref(new window)

Viana da Fonseca, A. and Soares, M. (2012), "Effect of principal stress rotation on cyclic liquefaction", Proceedings of the Second International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Taormina, Italy, May, pp. 28-30. (Online)

Viana da Fonseca, A. and Soares, S.M. (2014), "Effect of confinement pressure and inversion or principal stress rotation on cyclic behaviour of a sand liquefied during 2003 Boumerdes earthquake", Bullet. Earthq. Eng. (BEEE), submitted.

Wang, Z.L., Dafalias, Y.F., Li, X.S. and Makdisi, F.I. (2002), "State pressure index for modeling sand behaviour", J. Geotech Geoenviron. Eng., 128(6), 511-519. crossref(new window)

Yamamuro, J.A., Wood, F.M. and Lade, P.V. (2008), "Effect of depositional method on the microstructure of silty sand", Can. Geotech. J., 45(11), 1538-1555. DOI: 10.1139/T08-080 crossref(new window)

Yu, H.S. (1998), "CASM: A unified state parameter model for clay and sand", Int. J. Numer. Anal. Method. Geomech., 22(8), 621-653. crossref(new window)

Zouain, N., Pontes-Filho, I. and Vaunat, J. (2010), "Potentials for the modified Cam-Clay model", Eur. J. Mech. A/ Solids, 29(3), 327-336. crossref(new window)