JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Limit analysis of 3D rock slope stability with non-linear failure criterion
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Geomechanics and Engineering
  • Volume 10, Issue 1,  2016, pp.59-76
  • Publisher : Techno-Press
  • DOI : 10.12989/gae.2016.10.1.059
 Title & Authors
Limit analysis of 3D rock slope stability with non-linear failure criterion
Gao, Yufeng; Wu, Di; Zhang, Fei; Lei, G.H.; Qin, Hongyu; Qiu, Yue;
 Abstract
The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.
 Keywords
limit analysis;rock slope;three-dimensional;stability;failure criterion;
 Language
English
 Cited by
1.
The effect of non-persistent joints on sliding direction of rock slopes,;;;

Computers and Concrete, 2016. vol.17. 6, pp.723-737 crossref(new window)
1.
The effect of non-persistent joints on sliding direction of rock slopes, Computers and Concrete, 2016, 17, 6, 723  crossref(new windwow)
 References
1.
Carranza-Torres, C. (2004), "Some comments on the application of the Hoek-Brown failure criterion for intact rock and rock masses to the solution of tunnel and slope problems", MIR 2004-X Conference on Rock and Engineering Mechanics, Torino, 285-326.

2.
Carranza-Torres, C. and Fairhurst, C. (1999), "The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 36(6), 777-809. crossref(new window)

3.
Chakraborti, S., Konietzky, H. and Walter, K. (2012), "A comparative study of different approaches for factor of safety calculations by shear strength reduction technique for non-linear Hoek-Brown failure criterion", Geotech. Geol. Eng., 30(4), 925-934. crossref(new window)

4.
Chen, W.F. (1975), Limit Analysis and Soil Plasticity, Elsevier, Amsterdam, The Netherlands.

5.
Chen, Z.Y. (1992), "Random trials used in determining global minimum factors of safety of slopes", Can. Geotech. J., 29(2), 225-233. crossref(new window)

6.
Chen, W.F. and Liu, X.L. (1990), Limit Analysis in Soil Mechanics, Elsevier, Amsterdam, The Netherlands.

7.
Collins, I.F., Gunn, C.I.M., Pender, M.J. and Yan, W. (1988), "Slope stability analyses for materials with a nonlinear failure envelope", Int. J. Numer. Anal. Methods Geomech., 12(5), 533-550. crossref(new window)

8.
Dawson, E., You, K. and Park, Y. (2000), "Strength-reduction stability analysis of rock slopes using the Hoek-Brown failure criterion", Geotechnical Special Publication, 65-77.

9.
Fraldi, M. and Guarracino, F. (2009), "Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 46(4), 665-673. crossref(new window)

10.
Fu, W. and Liao, Y. (2010), "Non-linear shear strength reduction technique in slope stability calculation", Comput. Geotech., 37(3), 288-298. crossref(new window)

11.
Hammah, R.E., Curran, J.H., Yacoub, T.E. and Corkum, B. (2004), "Stability analysis of rock slopes using the finite element method", Proceedings of the ISRM Regional Symposium, EUROCK.

12.
Hobbs, D. (1966), "A study of the behaviour of broken rock under triaxial compression and its application to mine roadways", Int. J. Rock Mech. Min. Sci., 3(1), 11-43. crossref(new window)

13.
Hoek, E. (1983), "Strength of jointed rock masses", Geotechnique, 33(3), 187-223. crossref(new window)

14.
Hoek, E. (2007), Rock Mass Properties, Practical rock engineering, Rocscience Inc. http://www.rocscience.com/hoek/corner/11_Rock_mass_properties.pdf

15.
Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div. ASCE, 106(GT9), 1013-1035.

16.
Hoek, E., Wood, D. and Shah, S. (1992), "A modified Hoek-Brown failure criterion for jointed rock masses", Proc. Rock Characterization, Symp. Int. Soc. Rock Mech.: Eurock, 92, 209-214.

17.
Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, January, pp. 267-273.

18.
Li, A.J., Merifield, R.S. and Lyamin, A.V. (2008), "Stability charts for rock slopes based on the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 45(5), 689-700. crossref(new window)

19.
Li, A.J., Lyamin, A.V. and Merifield, R.S. (2009), "Seismic rock slope stability charts based on limit analysis methods", Comput. Geotech., 36(1-2), 135-148. crossref(new window)

20.
Lin, H., Zhong, W., Xiong, W. and Tang, W. (2014), "Slope stability analysis using limit equilibrium method in nonlinear criterion", Sci. World J.

21.
Michalowski, R.L. and Drescher, A. (2009), "Three-dimensional stability of slopes and excavations", Geotechnique, 59(10), 839-850. crossref(new window)

22.
Michalowski, R.L. and Martel, T. (2011), "Stability charts for 3D failures of steep slopes subjected to seismic excitation", J. Geotech. Geoenviron. Eng., 137(2), 183-189. crossref(new window)

23.
Michalowski, R.L. and You, L.Z. (2000), "Displacements of reinforced slopes subjected to seismic loads", J. Geotech. Geoenviron. Eng., 126(8), 685-694. crossref(new window)

24.
Saada, Z., Maghous, S. and Garnier, D. (2012), "Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 55, 45-54.

25.
Sharan, S.K. (2003), "Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media", Int. J. Rock Mech. Min. Sci., 40(6), 817-824. crossref(new window)

26.
Shen, J. and Karakus, M. (2013), "Three-dimensional numerical analysis for rock slope stability using shear strength reduction method", Can. Geotech. J., 51(2), 164-172.

27.
Shen, J., Karakus, M. and Xu, C. (2013), "Chart-based slope stability assessment using the Generalized Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 64, 210-219.

28.
Sheorey, P.R., Biswas, A.K. and Choubey, V.D. (1989), "An empirical failure criterion for rocks and jointed rock masses", J. Eng. Geol., 26(2), 141-159. crossref(new window)

29.
Yang, X.L. and Qin, C.B. (2014), "Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion", Geomech. Eng., 6(5), 503-515. crossref(new window)

30.
Yang, X.L., Li, L. and Yin, J.H. (2004), "Seismic and static stability analysis for rock slopes by a kinematical approach", Geotechnique, 54(8), 543-549. crossref(new window)

31.
Yudhbir, Y., Lemanza, W. and Prinzl, F. (1983), "An empirical failure criterion for rock masses", Proceedings of the 5th ISRM Congress, International Society for Rock Mechanics, Melbourne, Australia, April.