JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Charts for estimating rock mass shear strength parameters
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Geomechanics and Engineering
  • Volume 10, Issue 3,  2016, pp.257-267
  • Publisher : Techno-Press
  • DOI : 10.12989/gae.2016.10.3.257
 Title & Authors
Charts for estimating rock mass shear strength parameters
Wan, Ling; Wei, Zuoan; Shen, Jiayi;
 Abstract
Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and which is termed the strength ratio (SR). It is found that the values of and of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters (uniaxial compressive strength), (unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.
 Keywords
shear strength parameters;strength ratio;Hoek-Brown;charts assessment;
 Language
English
 Cited by
 References
1.
Azari, B., Fatahi, B. and Khabbaz, H. (2015), "Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour", Geomech. Eng., Int. J., 8(2), 187-220. crossref(new window)

2.
Barton, N. (2013), "Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions", J. Roc. Mech. Geotech. Eng., 5(4), 249-261. crossref(new window)

3.
Chen, G., Huang, R., Xu, Q., Li, T. and Zhu, M. (2013), "Progressive modelling of the gravity-induced landslide using the local dynamic strength reduction method", J. Mt. Sci., 10(4), 532-540. crossref(new window)

4.
Eid, H. (2014), "Stability charts for uniform slopes in soils with nonlinear failure envelopes", Eng. Geol., 168, 38-45. crossref(new window)

5.
Fan, L., Yi, X. and Ma, G. (2013), "Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock", Int. J. Appl. Mech., 5(2), 1350022. crossref(new window)

6.
Gao, Y., Zhang, F., Lei, G., Li, D., Wu, Y. and Zhang, N. (2013), "Stability charts for 3D failures of homogeneous slopes", J. Geotech. Geoenviron. Eng., ASCE, 139(9), 1528-1538. crossref(new window)

7.
Hoek, E. (2012), "Blast damage factor D", Technical note for RocNews. https://www.rocscience.com

8.
Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 Edition", Proceedings of NARMS-TAC 2002, Mining Innovation and Technology, (R. Hammah, W. Bawden, J. Curran, and M. Telesnicki Eds.), Toronto, Canada, July, pp. 267-273.

9.
Li, X. and Tao, M. (2015), "The influence of initial stress on wave propagation and dynamic elastic coefficients", Geomech. Eng., Int. J., 8(3), 377-390. crossref(new window)

10.
Marinos, V., Marinos, P. and Hoek, E. (2005), "The geological strength index: applications and limitations", B Eng. Geol. Environ., 64(1), 55-65. crossref(new window)

11.
Michalowski, R.L. (2010), "Limit analysis and stability charts for 3D slope failures", J. Geotech. Geoenviron. Eng., ASCE, 136(4), 583-593. crossref(new window)

12.
Shen, J. and Karakus, M. (2014), "Simplified method for estimating the Hoek-Brown constant for intact rocks", J. Geotech. Geoenviron. Eng., ASCE, 140(6), 04014025. crossref(new window)

13.
Shen, J., Karakus, M. and Xu, C. (2013), "Chart-based slope stability assessment using the Generalized Hoek-Brown criterion", Int. J. Rock. Mech. Min. Sci., 64, 210-219.

14.
Wyllie, D.C. and Mah, C. (2004), Rock Slope Engineering: Civil and Mining, (4th Edition), Spon Press, New York, NY, USA.

15.
Yang, X. and Pan, Q. (2015), "Three dimensional seismic and static stability of rock slopes", Geomech. Eng., Int. J., 8(1), 97-111. crossref(new window)

16.
Zhang, G., Tan, J., Zhang, L. and Xiang, Y. (2015), "Linear regression analysis for factors influencing displacement of high-filled embankment slopes", Geomech. Eng., Int. J., 8(4), 511-521. crossref(new window)

17.
Zheng, D., Nian, T., Liu, B., Yin, P. and Song, L. (2015), "Coefficient charts for active earth pressures under combined loadings", Geomech. Eng., Int. J., 8(3), 461-473. crossref(new window)

18.
Zuo, J., Liu, H. and Li, H. (2015), "A theoretical derivation of the Hoek-Brown failure criterion for rock materials", J. Roc. Mech. Geotech. Eng., 7(4), 361-366. crossref(new window)