JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Geomechanics and Engineering
  • Volume 10, Issue 3,  2016, pp.269-284
  • Publisher : Techno-Press
  • DOI : 10.12989/gae.2016.10.3.269
 Title & Authors
Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression
Zhang, Wengang; Goh, Anthony T.C.;
 Abstract
Simplified techniques based on in situ testing methods are commonly used to assess seismic liquefaction potential. Many of these simplified methods were developed by analyzing liquefaction case histories from which the liquefaction boundary (limit state) separating two categories (the occurrence or non-occurrence of liquefaction) is determined. As the liquefaction classification problem is highly nonlinear in nature, it is difficult to develop a comprehensive model using conventional modeling techniques that take into consideration all the independent variables, such as the seismic and soil properties. In this study, a modification of the Multivariate Adaptive Regression Splines (MARS) approach based on Logistic Regression (LR) LR_MARS is used to evaluate seismic liquefaction potential based on actual field records. Three different LR_MARS models were used to analyze three different field liquefaction databases and the results are compared with the neural network approaches. The developed spline functions and the limit state functions obtained reveal that the LR_MARS models can capture and describe the intrinsic, complex relationship between seismic parameters, soil parameters, and the liquefaction potential without having to make any assumptions about the underlying relationship between the various variables. Considering its computational efficiency, simplicity of interpretation, predictive accuracy, its data-driven and adaptive nature and its ability to map the interaction between variables, the use of LR_MARS model in assessing seismic liquefaction potential is promising.
 Keywords
multivariate adaptive regression splines;logistic regression;seismic liquefaction potential;interaction;basis function;limit state function;
 Language
English
 Cited by
1.
A study on the liquefaction risk in seismic design of foundations,;;;

Geomechanics and Engineering, 2016. vol.11. 6, pp.805-820 crossref(new window)
1.
Interactive image segmentation with a regression based ensemble learning paradigm, Frontiers of Information Technology & Electronic Engineering, 2017, 18, 7, 1002  crossref(new windwow)
2.
Liquefaction maps in Babol City, Iran through probabilistic and deterministic approaches, Geoenvironmental Disasters, 2018, 5, 1  crossref(new windwow)
3.
A study on the liquefaction risk in seismic design of foundations, Geomechanics and Engineering, 2016, 11, 6, 805  crossref(new windwow)
4.
Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study, Bulletin of Engineering Geology and the Environment, 2018, 77, 1, 191  crossref(new windwow)
5.
Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression, Tunnelling and Underground Space Technology, 2017, 70, 148  crossref(new windwow)
 References
1.
Andrus, R.D. and Stokoe, K.H. (2000), "Liquefaction resistance of soils from shear-wave velocity", J. Geotech. Geoenviron., 126(11), 1015-1025. crossref(new window)

2.
Atign, E. and Byrne, P.M. (2004), "Liquefaction flow of submarine slopes under partially undrained conditions: an effective stress approach", Can. Geotech. J., 41(1), 154-165. crossref(new window)

3.
Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression spline (MARS) and hinged hyper planes (HHP) for doweled pavement performance modeling", Constr. Build. Mater., 23(9), 3020-3023. crossref(new window)

4.
Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and Regression Trees, Wadsworth & Brooks, Monterey, CA, USA.

5.
Cetin, K.O., Seed, R.B., Der Kiureghian, A.K., Tokimatsu, K., Harder, L.F. Jr., Kayen, R.E. and Moss, R.E.S. (2004), "Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential", J. Geotech. Geoenviron., 130(12), 1314-1340. crossref(new window)

6.
Chen, Y., Liu, H. and Wu, H. (2013), "Laboratory study on flow characteristic of liquefied and postliquefied sand", Eur. J. Environ. Civil Eng., 17, 23-32. crossref(new window)

7.
Chen, Y., Xu, C., Liu, H. and Zhang, W. (2015), "Physical modeling of lateral spreading induced by inclined sandy foundation in the state of zero effective stress", Soil Dyn. Earthq. Eng., 76, 80-85. crossref(new window)

8.
Chern, S.G., Lee, C.Y. and Wang, C.C. (2008), "CPT-based liquefaction assessment by using fuzzy-neural network", J. Mar. Sci. Technol., 16(2), 139-148.

9.
Duman, E.S., Ikizier, S.B., Angin, Z. and Demir, G. (2014), "Assessment of liquefaction potential of the Erzincan, Eastern Turkey", Geomech. Eng., Int. J., 7(6), 589-612. crossref(new window)

10.
Friedman, J.H. (1989), "Regularized discriminant analysis", J. Am. Stat. Assoc., 84(405), 165-175. crossref(new window)

11.
Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat.,19, 1-141. crossref(new window)

12.
Goh, A.T.C. (2002), "Probabilistic neural network for evaluating seismic liquefaction potential", Can. Geotech. J., 39(1), 219-232. crossref(new window)

13.
Goh, A.T.C. and Zhang, W.G. (2014), "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, 1-10. crossref(new window)

14.
Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, (2nd Edition), Springer-Verlag, New York, NY, USA.

15.
Jekabsons, G. (2010), VariReg: A Software Tool for Regression Modelling using Various Modeling Methods, Riga Technical University, Latvia. URL: http://www.cs.rtu.lv/jekabsons/

16.
Juang, C.H., Rosowsky, D.V. and Tang, W.H. (1999), "Reliability-based method for assessing liquefaction potential of soils", J. Geotech. Geoenviron., 125(8), 684-689. crossref(new window)

17.
Juang, C.H., Yuan, H., Lee, D.H. and Lin, P.S. (2003), "Simplified cone penetration test-based method for evaluating liquefaction resistance of soils", J. Geotech. Geoenviron., 129(1), 66-80. crossref(new window)

18.
Lade, P.V. and Yamamuro, J.A. (2011), "Evaluation of static liquefacion potential of silty sand slopes", Can. Geotech. J., 48(2), 247-264. crossref(new window)

19.
Lai, S.Y., Hsu, S.C. and Hsieh, M.J. (2004), "Discriminant model for evaluating soil liquefaction potential using cone penetration test data", J. Geotech. Geoenviron., 130(12), 1271-1282. crossref(new window)

20.
Lancelot, L., Shahrour, I. and Mahmoud, M.A. (2004), "Instability and static liquefaction on proportional strain paths for sand at low stresses", J. Eng. Mech., 130(11), 1365-1372. crossref(new window)

21.
Lashkari, A. (2012), "Prediction of the shaft resistance of non-displacement piles in sand", Int. J. Numer. Anal. Met., 38(7), 904-931.

22.
Law, K.T., Cao, Y.L. and He, G.N. (1990), "An energy approach for assessing seismic liquefaction potential", Can. Geotech. J., 27(3), 320-329. crossref(new window)

23.
Liao, S.C., Veneziano, D. and Whitman, R.V. (1988), "Regression models for evaluating liquefaction probability", J. Geotech. Eng., 114(4), 389-411. crossref(new window)

24.
Liu, H., Chen, Y.M., Yu, T. and Yang, G. (2014), "Seismic analysis of the Zipingpu concrete-faced rockfill dam response to the 2008 Wenchuan, China, Earthquake", J. Perform. Constr. Facil., 29(5), 0401429. DOI: 10.1061/(ASCE)CF.1943-5509.0000506 crossref(new window)

25.
Marchetti, S. (1982), "Detection of liquefiable sand layers by means of quasi-static penetration tests", Proceedings of the 2nd European Symposium on Penetration Testing, Volume 2, Amsterdam, The Netherlands, May, pp. 458-482.

26.
Mirzahosseini, M., Aghaeifar, A., Alavi, A., Gandomi, A. and Seyednour, R. (2011), "Permanent deformation analysis of asphalt mixtures using soft computing techniques", Expert. Syst. Appl., 38(5), 6081-6100. crossref(new window)

27.
Moss, R.E.S., Seed, R.B., Kayen, R.E., Stewart, J.P., Der Kiureghian, A.K. and Cetin, K.O. (2006), "CPTbased probabilistic and deterministic assessment of in situ seismic soil liquefaction potential", J. Geotech. Geoenviron., 132(8), 1032-1051. crossref(new window)

28.
Muduli, P.K. and Das, S.K. (2014a), "CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach", Ind. Geotech. J., 44(1), 86-93. crossref(new window)

29.
Muduli, P.K. and Das, S.K. (2014b), "Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model", Acta. Geophys., 62(3), 529-543.

30.
Muduli, P.K., Das, S.K. and Bhattacharya, S. (2014), "CTP-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming", Georisk, 8(1), 14-28.

31.
Robertson, P.K. (1990), "Soil classification using the cone penetration test",Can.Geotech. J., 27(1), 151-158. crossref(new window)

32.
Robertson, P.K. and Wride, C.E. (1998), "Evaluating cyclic liquefaction potential using the cone penetration test", Can. Geotech. J., 35(3), 442-459. crossref(new window)

33.
Samui, P. (2011), "Determination of ultimate capacity of driven piles in cohesionless soil: A multivariate adaptive regression spline approach", Int. J. Numer. Anal. Method. Geomech., 36(11), 1434-1439.

34.
Samui, P. and Karup, P. (2011), "Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay", Int. J. Appl. Metaheur. Comput., 3(2), 33-42.

35.
Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Soil Mech. Found. Eng., 97(9), 1249-1273.

36.
Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R. (1985), "Influence of SPT procedures in soil liquefaction resistance evaluations", J. Geotech. Eng., 111(12), 861-878.

37.
Specht, D. (1990), "Porbabilistic neural networks", Neural Networks, 3(1), 109-118. crossref(new window)

38.
Stark, T.D. and Olson, S.M. (1995), "Liquefaction resistance using CPT and field case histories", J. Geotech. Eng., 121(12), 856-869. crossref(new window)

39.
Tosun, H., Seyrek, E., Orhan, A., Savas, H. and Turkoz, M. (2011), "Soil liquefaction potential in Eskisehir, NW Turkey", Nat. Hazard Earth Syst., 11, 1071-1082. crossref(new window)

40.
Toyota, H., Towhata, I., Imamura, S. and Kudo, K. (2004), "Shaking table tests on flow dynamics in liquefied slope", Soils Found., 44(5), 67-84.

41.
Vapnik, V., Golowich, S. and Smola, A. (1997), "Support vector method for function approximation, regression estimation, and signal processing", Adv. Neural Inform. Process. Syst., 9, 281-287.

42.
Youd, T.L., Idriss, I., Andrus, R., Arango, I., Castro, G., Christian, J., Dobry, R., Finn, W., Harder, L. Jr., Hynes, M., Ishihara, K., Koester, J., Liao, S., Marcuson, W. III, Martin, G., Mitchell, J., Moriwaki, Y., Power, M., Robertson, P., Seed, R. and Stokoe, K. II (2001), "Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron., 127(10), 817-833. crossref(new window)

43.
Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., Int. J., 3(4), 291-321. crossref(new window)

44.
Zhang, G.Q. (2000), "Neural networks for classification: A survey", IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 30(4), 451-462.

45.
Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. crossref(new window)

46.
Zhang, W.G. and Goh, A.T.C. (2014), "Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns", Geomech. Eng., Int. J., 7(4), 431-458. crossref(new window)