An integrated model for pore pressure accumulations in marine sediment under combined wave and current loading

- Journal title : Geomechanics and Engineering
- Volume 10, Issue 4, 2016, pp.387-403
- Publisher : Techno-Press
- DOI : 10.12989/gae.2016.10.4.387

Title & Authors

An integrated model for pore pressure accumulations in marine sediment under combined wave and current loading

Zhang, Y.; Jeng, D.-S.; Zha, H.-Y.; Zhang, J.-S.;

Zhang, Y.; Jeng, D.-S.; Zha, H.-Y.; Zhang, J.-S.;

Abstract

In this paper, an integrated model for the wave (current)-induced seabed response is presented. The present model consists of two parts: hydrodynamic model for wave-current interactions and poro-elastic seabed model for pore accumulations. In the wave-current model, based on the fifth-order wave theory, ocean waves were generated by adding a source function into the mass conservation equation. Then, currents were simulated through imposing a steady inlet velocity on one domain and pressure outlet on the other side. In addition, both of the Reynolds-Averaged Navier-Stokers (RANS) Equations and turbulence model would be applied in the fluid field. Once the wave pressures on the seabed calculated through the wave-current interaction model, it would be applied to be boundary conditions on the seabed model. In the seabed model, the poro-elastic theory would be imposed to simulate the seabed soil response. After comparing with the experimental data, the effect of currents on the seabed response would be examined by emphasize on the residual mechanisms of the pore pressure inside the soil. The build-up of the pore water pressure and the resulted liquefaction phenomenon will be fully investigated. A parametric study will also be conducted to examine the effects of waves and currents as well as soil properties on the pore pressure accumulation.

Keywords

waves and currents;poro-elastic;pore pressure accumulation;liquefaction;

Language

English

References

1.

Biot, M.A. (1941), "General theory of three-dimensional consolidation", J. Appl. Phys., 26(2), 155-164.

2.

Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid, Part I: Low frequency range", J. Acoust. Soc., Am., 28(2), 168-178.

3.

Grant, W.D. and Madsen, O.S. (1979), "Combined wave and current interaction with a rough bottom", J. Geophys. Res., 84(C4), 1797-1808.

4.

Hirt, C.W. and Nichols, B.D. (1981), "Volume of fluid(VOF) method for the dynamics of free boundaries", J. Comput. Phys., 39(1), 201-225.

5.

Hsu, H.C., Chen, Y.Y., Hsu, J.R.C. and Tseng, W.J. (2009), "Nonlinear water waves on uniform current in Lagrangian coordinates", J. Nonlinear Math. Phys., 16(1), 47-61.

6.

Israeli, M. and Orszag, S.A. (1981), "Approximation of radiation boundary conditions", J. Computat. Phys., 41(1), 115-131.

7.

Jeng, D.S. (2013), Porous Models for Wave-seabed Interactions, Springer.

8.

Jeng, D.S. and Ou, J. (2010), "3D models for wave-induced pore pressure near breakwater heads", Acta Mechanica, 215(1), 85-104.

9.

Jeng, D.S. and Seymour, B.R. (2007), "A simplified analytical approximation for pore-water pressure buildup in a porous seabed", J. Waterw Port Coast. Ocean Eng., 133(4), 309-312.

10.

Kemp, P.H. and Simons, R.R. (1982), "The interaction of waves and a turbulent current: Waves propagating with the current", J. Fuild Mech., 116, 227-250.

11.

Kemp, P.H. and Simons, R.R. (1983), "The interaction of waves and a turbulent current: Waves propagating against the current", J. Fuild Mech., 130, 73-89.

12.

Launder, B.E. and Spalding, D.B. (1974), "The numerical computation of turbulence flows", Comput. Method. Appl. Mech. Eng., 3(2), 269-289.

13.

Li, T., Troch, P. and Rouck, J.D. (2007), "Interactions of breaking waves with a current over cut cells", J. Comput. Phys., 223(2), 865-897.

14.

Liao, C.C., Zhao, H.-Y. and Jeng, D.-S. (2014), "Poro-elastoplastic model for wave-induced liquefaction", Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE2014), San Francisco, CA, USA, June. (CD-ROM)

15.

Liao, C.C., Jeng, D.-S. and Zhang L.L. (2015), "Analytical approximation fr dynamic soil response of a porous seabed under combined wave and current loading", J. Coast. Res., 31(5), 1120-1128. DOI: 10.2112/JCOASTRES-D-13-00120-.1

16.

Lin, P. and Liu, P.L.-F. (1999), "Internal wave-maker for Navier-Stokes equations models", J. Waterw Port Coast. Ocean Eng., ASCE, 125(4), 207-215.

17.

Liu, B., Jeng, D.-S. and Zhang, J.-S. (2014), "Dynamic response of a porous seabed of finite depth due to combined wave and current loading: Inertial forces", J. Coast. Res., 30(4), 765-776.

18.

Markus, D., Hojjat, M., Wuechner, R. and Bletzinger, K.U. (2013), "A CFD approach to modelling wavecurrent interaction", Int. J. Offshore Polaer Eng., 23(1), 29-32.

19.

Park, J.C., Kim, M.H. and Miyata, H. (2001), "Three dimensional numerical wave tank simulations on fully nonlinear wave-current-body interactions", J. Mar. Sci. Technol., 6(2), 70-82.

20.

Qi, W.G. and Gao, F.P. (2014), "Water flume modelling of dynamic responses of sandy seabed under the action of combined waves and current: Turbulent boundary layer and pore-water pressure", Proceedings of the 8th International Conference on Physical Modelling in Geotechnics (ICPMG2014), Perth, Australia, January.

21.

Rodi, W. (1993), Turbulence Models and their Application in Hydraulics-state-of-the Art Review, (3rd edition), Balkema, Rotterdam, The Netherlands.

22.

Sassa, S. and Sekiguchi, H. (1999), "Wave induced liquefaction of beds of sand in a centrifuge", Geotechnique, 49(5), 621-638.

23.

Sassa, S., Sekiguchi, H. and Miyamamot, J. (2001), "Analysis of progressive liquefaction as moving boundary problem", Geotechnique, 51(10), 847-857.

24.

Seed, H.B. and Lee, K.L. (1966), "Liquefaction of saturated sands during cyclic loading", J. Soil Mech. Found. Div., Proceedings of the American Society of Civil Engineers, 92(6), 1249-1273.

25.

Seed, H.B. and Rahman, M.S. (1978), "Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils", Marine Geotechnol., 3(2), 123-150.

26.

Sekiguchi, H., Kita, K. and Okamoto, O. (1995), "Response of poro-elastoplastic beds to standing waves", Soil. Found., 35(3), 31-42.

27.

Sumer, B.M. and Cheng, N.S. (1999), "A random-walk model for pore pressure accumulation in marine soils", Proceedings of the 9th International Offshore and Polar Engineering Conference (ISOPE99), Brest, France, May-June, 1, 521-528.

28.

Sumer, B.M. and Fredsoe, J. (2002), The Mechanism of Scour in the Marine Environment, World Scientific, NJ, USA.

29.

Sumer, B.M., Kirca, V.S.O. and Fredsoe, J. (2012), "Experimental validation of a mathematical model for seabed liquefaction under waves", Int. J. Offshore Polar Eng., 22(2), 133-141.

30.

Umeyama, M. (2009), "Changes in turbulent flow structure under combined wave-current motions", J. Waterw Port Coast. Ocean Eng., 135(5), 213-227.

31.

Wolf, J. and Prandle, D. (1999), "Some observations of wave-current interaction", Coast. Eng., 37, 471-485.

32.

Yamamoto, T., Koning, H., Sellmeijer, H. and Hijum, E.V. (1978), "On the response of a poro-elastic bed to water waves", J. Fluid Mech., 87(1), 193-206.

33.

Ye, J. and Jeng, D.-S. (2012), "Response of seabed to natural loading-wave and currents", J. Eng. Mech., ASCE, 138(6), 601-613.

34.

Ye, J., Jeng, D.-S., Wang, R. and Zhu, C. (2013), "Validation of a 2-D semi-coupled numerical model for fluids-structure-seabed interactions", J. Fluid. Struct., 42, 333-357.

35.

Ye, J., Jeng, D.-S., Wang, R. and Zhu, C. (2014), "Numerical simulation of the wave-induced dynamic response of poro-elastoplastic seabed foundations and a composite breakwater", Appl. Math. Model., 39(1), 322-347.

36.

You, Z.J. (1994), "A simple model for current velocity profiles in combined wave-current flows", Coast. Eng., 23(3-4), 289-304.

37.

Zen, K. and Yamazaki, H. (1990), "Mechanism of wave-induced liquefaction and densification in seabed", Soil. Found., 30(4), 90-104.

38.

Zhang, Y., Jeng, D.-S., Gao, F.P. and Zhang, J.-S. (2013a), "An analytical solution for response of a porous seabed to combined wave and current loading", Ocean Eng., 57, 240-247.