JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Applicability of low pressure membranes for wastewater treatment with cost study analyses
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Membrane Water Treatment
  • Volume 6, Issue 6,  2015, pp.477-488
  • Publisher : Techno-Press
  • DOI : 10.12989/mwt.2015.6.6.477
 Title & Authors
Applicability of low pressure membranes for wastewater treatment with cost study analyses
Maddah, Hisham A.; Chogle, Aman M.;
 Abstract
This study demonstrates that low pressure membranes are the ideal choice for industrial and/or municipal wastewater treatment by showing some promising experimental results, understanding different membrane filtration models, studying the potential of membrane bioreactors (MBRs), considering ceramic membranes fabrication and illustrating the role of nanotechnology in membranes. Cost study calculations are included to determine the treatment cost as well as the initial cost of various membrane types. Results showed that integrated membranes are preferred over MBR in case of average capacities. However, higher capacity situations are the most economical choice for MBR. It is shown that the least treatment cost in MBR was about . However, the is the theoretical cost which is very small compared to the actual average MBR treatment cost of .
 Keywords
MBR;treatment cost;membrane technology;RO;MF;UF;filtration model;nanoparticles;ceramic membrane fabrication;treatment experiments;
 Language
English
 Cited by
1.
Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation, Applied Water Science, 2017, 7, 6, 2637  crossref(new windwow)
 References
1.
Alzahrani, S. and Mohammad, A.W. (2014), "Challenges and trends in membrane technology implementation for produced water treatment: A review", J. Water Process Eng., 4, 107-133. crossref(new window)

2.
Bick, A., Gillerman, L., Manor, Y. and Oron, G. (2012), "Economic assessment of an integrated membrane system for secondary effluent polishing for unrestricted reuse", Water, 4(1), 219-236. crossref(new window)

3.
Chang, J., Kyung, D. and Lee, W. (2014), "Estimation of greenhouse gas (GHG) emission from wastewater treatment plants and effect of biogas reuse on GHG mitigation", Adv. Environ. Res., Int. J., 3(2), 173-183. crossref(new window)

4.
CostWater: MBR operating cost (2015), March 25. Retrieved from http://www.costwater.com/membranes/mbr/mbr_operating_cost.html

5.
DeCarolis, J., Adham, S., Pearce, W.R., Hirani, Z., Lacy, S. and Stephenson, R. (2007), "Cost trends of MBR systems for municipal wastewater treatment", Proceedings of the Water Environment Federation, 2007(15), 3407-3418. crossref(new window)

6.
Esfahani, B.A., Koupaei, M.S. and Ghasemi, S.Z. (2014), "Industrial waste water treatment by membrane systems", Indian J. Fundam. Appl. Life Sci., 4, 1168-1177.

7.
Gander, M., Jefferson, B. and Judd, S. (2000), "Aerobic MBRs for domestic wastewater treatment: A review with cost considerations", Separ. Purif. Technol., 18(2), 119-130. crossref(new window)

8.
Gautam, P. and Madathil, D. (2013), "Nanotechnology in waste water treatment: A review", Int. J. ChemTech Res., 5, 2303-2308.

9.
Jeison, D. and Van Lier, J.B. (2008), "Feasibility of thermophilic anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment", Desalination, 231(1), 227-235. crossref(new window)

10.
Konieczny, K. and Rafa, J. (2000), "Modeling of the membrane filtration process of natural waters", Polish J. Environ. Studies, 9(1), 57-64.

11.
Marrot, B., Barrios‐Martinez, A., Moulin, P. and Roche, N. (2004), "Industrial wastewater treatment in a membrane bioreactor: A review", Environ. Progress, 23(1), 59-68. crossref(new window)

12.
Neoh, C.H., Noor, Z.Z., Mutamim, N.S.A. and Lim, C.K. (2016), "Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems", Chem. Eng. J., 283, 582-594. crossref(new window)

13.
Parma, S. and Chowdhury, P. (2014), "Preparation and characterization of microfiltration ceramic membrane for oily waste water treatment", Int. J. Res. Eng. Technol., 3(3), 725-730.

14.
Saha, P., Hossain, Md. Z., Mozumder, S.I., Uddin, Md. T., Islam, Md. A., Hoinkis, J., Deowan, S.A., Drioli, E. and Figoli, A. (2014), "MBR technology for textile wastewater treatment: First experience in Bangladesh", Membr. Water Treat., Int. J., 5(3), 197-205. crossref(new window)

15.
Sutton, P.M. (2006), "Membrane bioreactors for industrial wastewater treatment: Applicability and selection of optimal system configuration", Proceedings of the Water Environment Federation, 2006(9), 3233-3248. crossref(new window)

16.
United States Environmental Protection Agency: Water science (2015), March 25. Retrieved from http://www2.epa.gov/science-and-technology/water-science

17.
Valizadeh, B., Ashtiani, F.Z., Fouladitajar, A., Dabir, B., Baraghani, S.S.M., Armand, S.B., Salari, B. and Kouchakiniya, N. (2015), "Scale-up economic assessment and experimental analysis of MF-RO integrated membrane systems in oily wastewater treatment plants for reuse application", Desalination, 374, 31-37. crossref(new window)

18.
Zhang, A., Liu, Z., Chen, Y., Kuschk, P. and Liu, Y. (2014), "Effects of EPS on membrane fouling in a hybrid membrane bioreactor for municipal wastewater treatment", Membr. Water Treat., Int. J., 5(1), 1-14. crossref(new window)