JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Industrial wastewater treatment by using of membrane
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Membrane Water Treatment
  • Volume 6, Issue 6,  2015, pp.489-499
  • Publisher : Techno-Press
  • DOI : 10.12989/mwt.2015.6.6.489
 Title & Authors
Industrial wastewater treatment by using of membrane
Razavi, Seyed Mohammad Reza; Miri, Taghi; Barati, Abolfazl; Nazemian, Mahboobeh; Sepasi, Mohammad;
 Abstract
In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.
 Keywords
Hollow Fiber Membrane Bioreactor (HF-MBR);refinery wastewater;wastewater treatment;;COD;RO;
 Language
English
 Cited by
1.
Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation, Membrane Water Treatment, 2016, 7, 5, 463  crossref(new windwow)
2.
Mathematical Modeling and Simulation of Nitrate Separation from Contaminated Water in a Membrane Contactor, Iranian Journal of Science and Technology, Transactions A: Science, 2016  crossref(new windwow)
3.
The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO 2 purging versus three different antiscalants, Journal of Membrane Science, 2018, 546, 61  crossref(new windwow)
 References
1.
Andrzej, B.K. and Field, R.W. (1996), "Process factors during removal of oil-in-water emulsions with cross-flow microfiltration", Desalination, 105(1-2), 79-89. crossref(new window)

2.
APHA (2005), Standard Methods for the Examination of Water and Wastewater, (21st Ed.), Washington, D.C., USA.

3.
Campos, J.C., Borges, R.M.H., Oliveira Filho, A.M., Nobrega, R. and Sant'anna, Jr. G.L. (2002), "Oilfield wastewater treatment by combined microfiltration and biological processes", Water Res., 36(1), 95-104. crossref(new window)

4.
Chiemchaisri, C. and Yamamoto, K. (1994), "Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment", J. Membr. Sci., 87(1-2), 119-129. crossref(new window)

5.
Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N. and Kroiss, H. (2005), "Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants", Water Res., 39(19), 4797-4807. DOI: http://dx.doi.org/10.1016/j.watres.2005.09.015 crossref(new window)

6.
del Pino, M.P. and Durham, B. (1999), "Wastewater reuse through dual-membrane processes: Opportunities for sustainable water resources", Desalination, 124(1-3), 271-277. crossref(new window)

7.
Fakhru'l-Razi, A., Pendashteh, A.R., Luqman Chuah, A., Dayang Radiah, A.B.,Madaeni, S.S. and Zurina, Z.A. (2009), "Review of technologies for oil and gas produced water treatment", J. Hazard. Mater., 170(2-3), 530-551. crossref(new window)

8.
Fakhru'l-Razi, A., Pendashteh, A., Abidin, Z.Z., Abdullah, L.C., Biak, D.R.A. and Madaeni, S.S. (2010), "Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use", Bioresource Technol., 101(18), 6942-6949. crossref(new window)

9.
Fazeli, S., Fatehizadeh, A., Hassani, A.H., Torabian, A. and Amin, M.M. (2012), "Evaluation of sheet membrane bioreactor efficiency for municipal wastewater treatment", Int. J. Environ. Health Eng., 1(19), 1-5. crossref(new window)

10.
Fazaeli, R., Razavi, S.M.R., Najafabadi, M.S., Torkamand, R. and Hemmati, A. (2015), "Computational simulation of CO2 removal from gas mixtures by chemical absorbents in porous membranes", RSC Adv., 5, 36787-36797. DOI: 10.1039/C5RA02001H crossref(new window)

11.
Ghadiri, M., Ghasemi Darehnaei, M., Sabbaghian, S. and Shirazian, S. (2013), "Computational simulation for transport of priority organic pollutants through nanoporous membranes", Chem. Eng. Technol., 36(3), 507-512. crossref(new window)

12.
Grelot, A., Tazi-Pain, A., Weinrich, L., Lesjean, B. and Grasmick, A. (2009), "Evaluation of a novel flat sheet MBR filtration system", Desalination, 236(1-3), 111-119. crossref(new window)

13.
Gryta, M., Tomaszewska, M. and Karakulski, K. (2006), "Wastewater treatment by membrane distillation", Desalination, 198(1-3), 67-73. DOI: http://dx.doi.org/10.1016/j.desal.2006.09.010 crossref(new window)

14.
Kang, I.J., Lee, C.H. and Kim, K.J. (2003), "Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system", Water Res., 37(5), 1192-1197. crossref(new window)

15.
Kertesz, S. (2014), "Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration", Membr. Water Treat., Int. J., 5(2), 73-86. crossref(new window)

16.
Kong, J. and Li, K. (1999), "Oil removal from oil-in-water emulsions using PVDF membranes", J. Sep. Purif. Technol., 16(1), 83-93. crossref(new window)

17.
Lau, W. and Ismail, A.F. (2009), "Polymeric nano filtration membranes for textile dye wastewater treatment:Preparation, performance evaluation, transport modeling, and fouling control - A review", Desalination, 245(1-3), 321-348. crossref(new window)

18.
Le-Clech, P., Chen, V. and Fane, T. (2006), "Fouling in membrane bioreactors used in wastewater treatment", J. Membrane Sci., 284(1-2), 17-53. crossref(new window)

19.
Lee, S., Aurelle, Y. and Roques, H. (1994), "Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil", J. Membr. Sci., 91(1), 231. crossref(new window)

20.
Melin, T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., van der Graaf, J. and Wintgens, T. (2006), "Membrane bioreactor technology for wastewater treatment and reuse", Desalination, 187(1-3), 271-282. DOI: http://dx.doi.org/10.1016/j.desal.2005.04.086 crossref(new window)

21.
Miramini, S.A., Razavi, S.M.R., Ghadiri, M., Mahdavi, S.Z. and Moradi, S. (2013), "CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor", Chem. Eng. Process.: Process Intensif., 72, 130-136. DOI: http://dx.doi.org/10.1016/j.cep.2013.07.005 crossref(new window)

22.
Neff, J.M. (2002), Bioaccumulation in Marine Organisms: Effects of Contaminants from Oil Well Produced Water, Elsevier Science Publishers, Amsterdam, Netherlands.

23.
Pendashteh, A., Fakhru'l-Razi, A., Madaeni, S., Abdullah, L., Abidin, Z. and Awang Biak, D. (2012), "Evaluation of membrane bioreactor for hypersaline oily wastewater treatment", Process. Saf. Environ., 90(1), 45-55. crossref(new window)

24.
Racz, G., Kerker, S., Schmitz, O., Schnabel, B., Kovacs, Z., Vatai, G., Ebrahimi, M. and Czermak, P. (2015), "Experimental determination of liquid entry pressure (LEP) in vacuum membrane distillation for oily wastewaters", Membr. Water Treat., Int. J., 6(3), 237-249. crossref(new window)

25.
Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2- methyl-1-propanol and piperazine", Int. J. Greenh. Gas Con., 15, 142-149. DOI: http://dx.doi.org/10.1016/j.ijggc.2013.02.011 crossref(new window)

26.
Razavi, S.M.R., Shirazian, S. and Najafabadi, M.S. (2015a), "Investigations on the ability of di-isopropanol amine solution for removal of CO2 from natural gas in porous polymeric membranes", Polym. Eng. Sci., 55(3), 598-603. DOI: 10.1002/pen.23924 crossref(new window)

27.
Razavi, S.M.R., Shirazian, S. and Nazemian, M. (2015b), "Numerical simulation of CO2 separation from gas mixtures in membrane modules: Effect of chemical absorbent", Arab. J. Chem. [In Press] DOI: http://dx.doi.org/10.1016/j.arabjc.2015.06.006 crossref(new window)

28.
Reith, C. and Birkenhead, B. (1998), "Membranes enabling the affordable and cost effective reuse of waste water as an alternative water source", Desalination, 117(1-3), 203-209. crossref(new window)

29.
Rezakazemi, M., Ghafarinazari, A., Shirazian, S. and Khoshsima, A. (2013), "Numerical modeling and optimization of wastewater treatment using porous polymeric membranes", Polym. Eng. Sci., 53(6), 1272-1278. crossref(new window)

30.
Saha, P., Hossain, Md. Z., Mozumder, Md. S.I., Uddin, Md. T., Islam, Md. A., Hoinkis, J. Deowan, S.A., Drioli, E. and Figoli, A. (2014), "MBR technology for textile wastewater treatment: First experience in Bangladesh", Membr. Water Treat., Int. J., 5(3), 197-205. crossref(new window)

31.
Scholz, W. and Fuchs, W. (2000), "Treatment of oil contaminated wastewater in a membrane bioreactor", J. Water Res., 34(14), 3621-3629. crossref(new window)

32.
Shariati, F., Mehrnia, M., Sarrafzadeh, M.H., Rezaee, S., Grasmick, A. and Heran, M. (2013), "Fouling in a novel airlift oxidation ditch membrane bioreactor (AOXMBR) at different high organic loading rate", Sep. Purif. Technol., 105, 69-78. crossref(new window)

33.
Shim, J.K., Yoo, I.K. and Lee, Y.M. (2002), "Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor", Process Biochem., 38(2), 279-285. crossref(new window)

34.
Tahvildari, K., Razavi, S.M.R., Tavakoli, H., Mashayekhi, A. and Golmohammadzadeh, R. (2015), "Modeling and simulation of membrane separation process using computational fluid dynamics", Arab. J. Chem. [In Press] DOI: http://dx.doi.org/10.1016/j.arabjc.2015.02.022 crossref(new window)

35.
Tam, L.S., Tang, T.W., Lau, G.N., Sharma, K.R. and Chen, G.H. (2007), "A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems", Desalination, 202(1-3), 106-113. crossref(new window)

36.
Tellez, G.T., Nirmalakhandan, N. and Gardea-Torresdey, J. (2002), "Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water", Adv. Environ. Res., 6(4), 455-470. crossref(new window)

37.
Venkata Mohan, S., Chandrashekara Rao, N., Krishna Prasad, K., Mad-havi, B.T.V. and Sharma, P.N. (2005), "Treatment of complex chemical wastewater in a sequencing batch reactor (SBR) with an aerobic suspended growth configuration", Process Biochem., 40(5), 1501-1508. crossref(new window)

38.
Wang, S., Wen, J., Wang, H., Song, Y. and Wang, L. (1998), "Application of the polypropylene hollow fiber microfiltration membrane for treatment of the oil-contained waste water in oil field", J. Membr. Sci., 18(2), 28-32.

39.
Yuliwati, E. and Ismail, A.F. (2011), "Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment", Desalination, 273(1), 226-234. crossref(new window)

40.
Zhao, X., Wang, Y., Ye, Z., Borthwick, A. and Ni , J. (2006), "Oil field wastewater treatment in biological aerated filter by immobilized microorganisms", Process Biochem., 41(7), 1475-1483. crossref(new window)