JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CFD simulations of the fluid flow behavior in a spacer-filled membrane module
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Membrane Water Treatment
  • Volume 6, Issue 6,  2015, pp.513-524
  • Publisher : Techno-Press
  • DOI : 10.12989/mwt.2015.6.6.513
 Title & Authors
CFD simulations of the fluid flow behavior in a spacer-filled membrane module
Jun, Chen L.; Xiang, Jia Y.; Dong, Hu Y.;
 Abstract
In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles (, , , , , , , , , , respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between to , because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between to .The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.
 Keywords
computational fluid dynamics (CFD);membrane spacers;pressure drop;
 Language
English
 Cited by
1.
Flow behavior in weakly permeable micro-tube with varying viscosity near the wall, Polish Journal of Chemical Technology, 2017, 19, 4  crossref(new windwow)
2.
Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation, Membrane Water Treatment, 2016, 7, 5, 463  crossref(new windwow)
 References
1.
Ahmad, A.L. and Lau, K.K. (2006), "Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel", J. Membr. Sci., 286(1-2), 77-92. crossref(new window)

2.
Ahmad, A.L., Lau, K.K. and Abu Bakar, M.Z. (2005), "Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel", J. Membr. Sci., 262(1-2), 138-152. crossref(new window)

3.
Al-Sharif, S., Albeirutty, M., Cipollina, A. and Micale, G. (2013), "Modeling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code", Desalination, 311, 103-112. crossref(new window)

4.
Balster, J., Punt, I., Stamatialis, D.F. and Wessling, M. (2006), "Multi-layer spacer geometries with improved mass transport", J. Membr. Sci., 282(1-2), 351-361. crossref(new window)

5.
Balster, J., Stamatialis, D.F. and Wesslinga, M. (2010), "Membrane with integrated spacer", J. Membr. Sci., 360(1-2), 185-189. crossref(new window)

6.
Cao, Z., Wiley, D.E. and Fane, A.G. (2001), "CFD simulations of net-type turbulence promoters in a narrow channel", J. Membr. Sci., 185(2), 157-176. crossref(new window)

7.
Delyannis, E. and Belessiotis, V. (2010), "Desalination: The recent development path", Desalination, 264(3), 206-213. crossref(new window)

8.
Deng, D., Aouad, W., Braff, W.A., Schlumpberger, S., Suss, M.E. and Bazant, M.Z. (2015), "Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection", Desalination, 357, 77-83. crossref(new window)

9.
Dhananjay, D., Sandeep, K.K. and Kumar, A. (2005), "Flow visualization through spacer filled channels by computationalfluid dynamics-II: improved feed spacer designs", J. Membr. Sci., 249(1-2), 41-49. crossref(new window)

10.
Garcia-Vasquez, W., Dammak, L., Larchet, C., Nikonenko, V., Pismenskaya, N. and Grande, D. (2013), "Evolution of anion-exchange membrane properties in a full scale electrodialysis stack", J. Membr. Sci.,446(1), 255-265. crossref(new window)

11.
Khawaji, A.D., Kutubkhanah, I.K. and Wie, J.M. (2008), "Advances in seawater desalination technologies", Desalination, 221(1), 47-69. crossref(new window)

12.
Kodym, R., Vlasak, F., Snita, D., Cernin, A. and Bouzek, K. (2011), "Spatially two-dimensional mathematical model of the flow hydrodynamics in a channel filled with a net-like spacer", J. Membr. Sci., 368(1-2), 171-183. crossref(new window)

13.
Koutsou, C.P., Yiantsios, S.G. and Karabelas, A.J. (2007), "Direct numerical simulation of flow in spacerfilled channels: Effect of spacer geometrical characteristics", J. Membr. Sci., 291(1-2), 53-69. crossref(new window)

14.
Li, Y.L. and Tung, K.L. (2008), "CFD simulation of fluid flow through spacer-filled membrane module:selecting suitable cell types for periodic boundary conditions", Desalination, 233(1-3), 351-358. crossref(new window)

15.
Li, F., Meindersma, W., de Haan, A.B. and Reith, T. (2002), "Optimization of commercial net spacers in spiral wound membrane modules", J. Membr. Sci., 208(1-2), 289-302. crossref(new window)

16.
Li, F., Meindersma, W., de Haan, A.B. and Reith, T. (2004), "Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers", J. Membr. Sci., 232(1-2), 19-30. crossref(new window)

17.
Lipnizki, J. and Jonsson, G. (2002), "Flow dynamics and concentration polarisation in spacer-filled channels", Desalination, 146(1-3), 213-217. crossref(new window)

18.
Pouliot, Y. (2008), "Membrane processes in dairy technology-From a simple idea to worldwide panacea", Int. Dairy J., 18(7), 735-740. crossref(new window)

19.
Sandeep, K.K. and Kumar, A. (2001), "Flow visualization through spacer filled channels by computational fluid dynamics I. Pressure drop and shear rate calculations for flat sheet geometry", J. Membr. Sci., 193(1), 69-84. crossref(new window)

20.
Saremirad, P., Gomaa, H.G. and Zhu, J. (2012), "Effect of flow oscillations on mass transfer in electrodialysis with bipolar membrane", J. Membr. Sci., 405(1), 158-166.

21.
Shakaib, M., Hasani, S.M.F. and Mahmood, M. (2007), "Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling", J. Membr. Sci., 297(1-2), 74-89. crossref(new window)

22.
Shakaib, M., Hasani, S.M.F. and Mahmood, M. (2009), "CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels", J. Membr. Sci., 326(2), 270-284. crossref(new window)

23.
Sousa, P., Soares, A., Monteiro, E. and Rouboa, A. (2014), "A CFD study of the hydrodynamics in a desalination membrane filled with spacers", Desalination, 349, 22-30. crossref(new window)

24.
Strathmann, H. (2010), "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264(3), 268-288. crossref(new window)

25.
Walker, W.S., Kim, Y. and Lawler, D.F. (2014), "Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis-Part I: Sensitivity to superficial velocity", Desalination, 344, 152-162. crossref(new window)