Advanced SearchSearch Tips
Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Membrane Water Treatment
  • Volume 7, Issue 1,  2016, pp.23-38
  • Publisher : Techno-Press
  • DOI : 10.12989/mwt.2016.7.1.023
 Title & Authors
Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium
Khan, Muhammad Imran; Wu, Liang; Mondal, Abhishek N.; Yao, Zilu; Ge, Liang; Xu, Tongwen;
Batch adsorption of methyl orange (MO) from aqueous solution using three kinds of anion exchange membranes BI, BIII and DF-120B having different ion exchange capacities (IECs) and water uptakes () was investigated at room temperature. The FTIR spectra of anion exchange membranes was analysed before and after the adsorption of MO dye to investigate the intractions between dye molecules and anion exchange membranes. The effect of various parameters such as contact time, initial dye concentration and molarity of NaCl on the adsorption capacity was studied. The adsorption capacity found to be increased with contact time and initial dye concentration but decreased with ionic strength. The adsorption of MO on BI, BIII and DF-120B followed pseudo-first-order kinetics and the nonlinear forms of Freundlich and Langmuir were used to predict the isotherm parameters. This study demonstrates that anion exchange membranes could be used as useful adsorbents for removal of MO dye from wastewater.
adsorption;anion exchange membrane;methyl orange;langmuir isotherm;freundlich isotherm;
 Cited by
Adria-Cerezo, D.M., Llobat-Estelles, M. and Mauri-Aucejo, A.R. (2000), "Preconcentration and speciation of chromium in waters using solid-phase extraction and atomic absorption spectrometry", Talanta, 51(3), 531-536. crossref(new window)

Alkan, M. and Dogan, M. (2001), "Adsorption of copper(II) onto perlite", J. Colloid Interf. Sci., 243(2), 280-291. crossref(new window)

Benselka-Hadj Abdelkader, N., Bentouami, A., Derriche, Z., Bettahar, N. and de Menorval, L.C. (2011), "Synthesis and characterization of Mg-Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution", Chem. Eng. J., 169(1-3), 231-238. crossref(new window)

Berrios, M., Martin, M.A. and Martin, A. (2012), "Treatment of pollutants in wastewater: Adsorption of methylene blue onto olive-based activated carbon", J. Ind. Eng. Chem., 18(2), 780-784. crossref(new window)

Dąbrowski, A. (2001), "Adsorption-from theory to practice", Adv. Colloid Interf. Sci., 93(1-3), 135-224. crossref(new window)

Dizge, N., Keskinler, B. and Barlas, H. (2009), "Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin", J. Hazard. Mater., 167(1-3), 915-926. crossref(new window)

Duran, C., Ozdes, D., Gundogdu, A. and Senturk, H.B. (2011), "Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent", J. Chem. Eng. Data, 56(5), 2136-2147. crossref(new window)

El Qada, E.N., Allen, S.J. and Walker, G.M. (2008), "Adsorption of basic dyes from aqueous solution onto activated carbons", Chem. Eng. J., 135(3), 174-184. crossref(new window)

Freunlich, H. (1906), "Over the adsorption in solution", J. Phys. Chem., 57, 385-470.

Gong, R., Ding, Y., Li, M., Yang, C., Liu, H. and Sun, Y. (2005), "Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution", Dyes Pigm., 64(3), 187-192. crossref(new window)

Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y. and Zou, L. (2008), "Use of rice husk for the adsorption of congo red from aqueous solution in column mode", Bioresour. Technol., 99(8), 2938-2946. crossref(new window)

Haddadain, Z., Shavandi, M.A., Abidin, Z.Z., Razi, A.F. and Ismail, M.H. (2013), "Removal of methyl orange from aqueous solutions using Dragon Fruit (Hylocereusundatus) foliage", Chem. Sci. Trans., 2(3), 900-910.

Karcher, S., Kornmuller, A. and Jekel, M. (2001), "Screening of commercial sorbents for the removal of reactive dyes", Dyes Pigm., 51(2-3), 111-125. crossref(new window)

Karcher, S., Kornmuller, A. and Jekel, M. (2002), "Anion exchange resins for removal of reactive dyes from textile wastewaters", Water Res., 36(19), 4717-4724. crossref(new window)

Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. crossref(new window)

Li, Y., Xu, T.W. and Gong, M. (2006), "Fundamental studies of a new series of anion exchange membranes: membrane prepared from bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO) and pyridine", J. Membr. Sci., 279(1-2), 151-159.

Lin, X., Wu, L., Liu, Y., Ong, A.L., Poynton, S.D., Varcoe, J.R. and Xu, T.W. (2012), "Alkali resistant and conductive guanidinium-based anion-exchange membranes for alkaline polymer electrolyte fuel cells", J. Power Sour., 217, 373-380. crossref(new window)

Leinonen, H. and Lehto, J. (2000), "Ion-exchange of nickel by iminodiacetic acid chelating resin Chelex 100", React. Function. Polym., 43(1-2), 1-6. crossref(new window)

Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y. and Liu, J. (2010), "Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes", Water Res., 44(5), 1489-1497. crossref(new window)

Marcal, L., de Faria, E.H., Saltarello, M., Calefi, P.S., Nassar, E.J. and Ciuffi, K.J. (2011), "Aminefunctionalized titanosilicates prepared by the sol-gel process at adsorbent of azo-dye orange II", Ind. Eng. Chem. Res., 50(1), 239-246. crossref(new window)

McKay, G. (1982), "Adsorption of dyestuffs from aqueous solutions with activated carbon I: Equilibrium and batch contact-time studies", J. Chem. Technol. Biotechnol., 32(7-12), 759-772.

Mittal, A., Mittal, J., Malviya, A., Kaur, D. and Gupta, V.K. (2010), "Adsorption of hazardous dye crystal violet from wastewater by waste materials", J. Colloid Interf. Sci., 343(2), 463-473. crossref(new window)

Oladoja, N.A. and Akinlabi, A.K. (2009), "Congo red biosorption on palm kernel seed coat", Ind. Eng. Chem. Res., 48(13), 6188-6196. crossref(new window)

Otero, M., Rozada, F., Calvo, L.F., Garcia, A.I. and Moran, A. (2003), "Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges", Biochem. Eng. J., 15(1), 59-68. crossref(new window)

Ozcan, A.S., Erdem, B. and Ozcan, A. (2005), "Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite", Colloids and Surfaces A: Physicochem. Eng. A, 266(1-3), 73-81. crossref(new window)

Roy, A., Chakraborty, S., Kundu, S.P., Adhikari, B. and Majumder, S.B. (2012), "Adsorption of anionic-azo dye from aqueous solution by lignocellulose-biomass jute fiber: Equilibrium, kinetics, and thermodynamics study", Ind. Eng. Chem. Res., 51(37), 12095-12106. crossref(new window)

Royer, B., Cardoso, N.F., Lima, E.C., Vaghetti, J.C.P., Simon, N.M., Calvete, T. and Veses, R.C. (2009), "Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions-Kinetic and equilibrium study", J. Hazard. Mater., 164(2-3), 1213-1222. crossref(new window)

Shek, T.-H., Ma, A., Lee, V.K.C. and McKay, G. (2009), "Kinetics of zinc ions removal from effluents using ion exchange resin", Chem. Eng. J., 146(1), 63-70. crossref(new window)

Theydan, S.K. and Ahmed, M.J. (2012), "Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies", J. Anal. App. Pyrol., 97(0), 116-122. crossref(new window)

Weber, T.W. and Chakravorti, R.K. (1974), "Pore and solid diffusion models for fixed-bed adsorbers", AIChE J., 20(2), 228-238. crossref(new window)

Wu, C.M., Wu, Y.H., Luo, J.Y., Xu, T.W. and Fu, Y.X. (2010), "Fu, Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process", J. Membr. Sci., 356(1-2), 96-104. crossref(new window)

Xiong, L., Yang, Y., Mai, J., Sun, W., Zhang, C., Wei, D., Chen, Q. and Ni, J. (2010), "Adsorption behavior of methylene blue onto titanate nanotubes", Chem. Eng. J., 156(2), 313-320. crossref(new window)

Xu, T., Fu, R. and Yan, L. (2003), "A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations", J. Colloid Interf. Sci., 262(2), 342-350. crossref(new window)

Zafar, S., Khalid, N., Daud, M. and Mirza, M.L. (2015), "Kinetic studies of the adsorption of Thorium Ions onto Rice Husk from aqueous media: Linear and Nonlinear Approach", The Nucleus, 52(1), 14-19.