JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Simulation of transport phenomena in porous membrane evaporators using computational fluid dynamics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Membrane Water Treatment
  • Volume 7, Issue 2,  2016, pp.87-100
  • Publisher : Techno-Press
  • DOI : 10.12989/mwt.2016.7.2.087
 Title & Authors
Simulation of transport phenomena in porous membrane evaporators using computational fluid dynamics
Mohammadi, Mehrnoush; Marjani, Azam; Asadollahzadeh, Mehdi; Hemmati, Alireza; Kazemi, Seyyed Masoud;
 Abstract
A numerical simulation of membrane evaporation process was carried out in this work. The aim of simulation is to describe transport of water through porous membranes applicable to the concentration of aqueous solutions. A three-dimensional mathematical model was developed which considers transport phenomena including mass, heat, and momentum transfer in membrane evaporation process. The equations of model were then solved numerically using finite element method. The results of simulation in terms of evaporation flux were compared with experimental data, and confirmed the accuracy of model. Moreover, profile of pressure, concentration, and heat flux were obtained and analyzed. The results revealed that developed 3D model is capable of predicting performance of membrane evaporators in concentration of aqueous solutions.
 Keywords
membrane;mass transfer;membrane contactor;simulation;modeling;
 Language
English
 Cited by
1.
Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation,;;;;

Membrane Water Treatment, 2016. vol.7. 5, pp.463-476 crossref(new window)
1.
Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation, Membrane Water Treatment, 2016, 7, 5, 463  crossref(new windwow)
 References
1.
Abdullah, N.S. and Das, D.B. (2007), "Modelling nutrient transport in hollow fibre membrane bioreactor for growing bone tissue with consideration of multi-component interactions", Chem. Eng. Sci., 62(21), 5821-5839. crossref(new window)

2.
Abdullah, N.S., Das, D.B., Ye, H. and Cui, Z.F. (2006), "3D bone tissue growth in hollow fibre membrane bioreactor: Implications of various process parameters on tissue nutrition", Int. J. Artif. Organs, 29(9), 841-851. crossref(new window)

3.
Al-Marzouqi, M.H., El-Naas, M.H., Marzouk, S.A.M., Al-Zarooni, M.A., Abdullatif, N. and Faiz, R. (2008), "Modeling of $CO_2$ absorption in membrane contactors", Sep. Purif. Technol., 59(3), 286-293. crossref(new window)

4.
Cussler, E.L. (1997), Diffusion Mass Transfer in Fluid Systems, Cambridge University Press, New York, NY, USA.

5.
Das, R. (2014), "Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin", Energy Convers. Manage., 87, 96-106. crossref(new window)

6.
Das, R. and Ooi, K.T. (2013), "Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement", Energy Convers. Manage., 66, 211-219. crossref(new window)

7.
Drioli, E., Criscuoli, A. and Crucio, E. (2006), Membrane Contactors: Fundamentals, Applications and Potentialities, Elsevier, Amsterdam, The Netherlands.

8.
Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011a), "Mass transfer modeling of ion transport through nanoporous media", Desalination, 281, 325-333. crossref(new window)

9.
Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011b), "Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors", Desalination, 275(1-3), 126-132. crossref(new window)

10.
Fadaei, F., Hoshyargar, V., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects", Desalination, 284, 316-323. crossref(new window)

11.
Fasihi, M., Shirazian, S., Marjani, A. and Rezakazemi, M. (2012), "Computational fluid dynamics simulation of transport phenomena in ceramic membranes for $SO_2$ separation", Math. Comput. Modell., 56(11-12), 278-286. crossref(new window)

12.
Ghadiri, M. and Shirazian, S. (2013), "Computational simulation of mass transfer in extraction of alkali metals by means of nanoporous membrane extractors", Chem. Eng. Process. Process Intensif., 69, 57-62. crossref(new window)

13.
Ghadiri, M., Marjani, A. and Sanchez, J. (2013), "Mathematical modeling and simulation of $CO_2$ stripping from monoethanolamine solution using nano porous membrane contactors", Int. J. Greenhouse Gas Control, 13, 1-8. crossref(new window)

14.
Hengl, N., Mourgues, A., Pomier, E., Belleville, M.P., Paolucci-Jeanjean, D., Sanchez, J. and Rios, G. (2007), "Study of a new membrane evaporator with a hydrophobic metallic membrane", J. Membr. Sci., 289(1-2), 169-177. crossref(new window)

15.
Hengl, N., Mourgues, A., Belleville, M.P., Paolucci-Jeanjean, D. and Sanchez, J. (2010), "Membrane contactor with hydrophobic metallic membranes: 2. Study of operating parameters in membrane evaporation", J. Membr. Sci., 355(1-2), 126-132. crossref(new window)

16.
Jevons, K. and Awe, M. (2010), "Economic benefits of membrane technology vs. evaporator", Desalination, 250(3), 961-963. crossref(new window)

17.
Kiwan, S. (2007), "Thermal analysis of natural convection porous fins", Transp. Porous Med., 67(1), 17-29. crossref(new window)

18.
Kohnehshahri, R.K., Salimi, M., Mohaddecy, S.R.S. and Shirazian, S. (2011), "Modeling and numerical simulation of catalytic reforming reactors", Orient. J. Chem., 27(4), 1351-1355.

19.
Kunz, W., Benhabiles, A. and Ben-Aim, R. (1996), "Osmotic evaporation through macroporous hydrophobic membranes: a survey of current research and applications", J. Membr. Sci., 121(1), 25-36. crossref(new window)

20.
Lawson, K.W. and Lloyd, D.R. (1997), "Membrane distillation", J. Membr. Sci., 124(1), 1-25. crossref(new window)

21.
Marjani, A. and Shirazian, S. (2011a), "Computational fluid dynamics simulation of ammonia removal from wastewaters by membrane", Asian J. Chem., 23(7), 3299-3300.

22.
Marjani, A. and Shirazian, S. (2011b), "Hydrodynamic investigations on heavy metal extraction in membrane extractors", Orient. J. Chem., 27(4), 1311-1316.

23.
Marjani, A. and Shirazian, S. (2011c), "Investigation on copper extraction using numerical simulation", Asian J. Chem., 23(7), 3289-3290.

24.
Marjani, A. and Shirazian, S. (2011d), "Investigation on numerical simulation of acetone and ethanol separation from water by using membrane", Asian J. Chem., 23(7), 3293-3294.

25.
Marjani, A. and Shirazian, S. (2011e), "Simulation of heavy metal extraction in membrane contactors using computational fluid dynamics", Desalination, 281, 422-428. crossref(new window)

26.
Marjani, A. and Shirazian, S. (2012a), "Application of CFD Techniques for Prediction of NH3 transport through porous membranes", Orient. J. Chem., 28(1), 67-72. crossref(new window)

27.
Marjani, A. and Shirazian, S. (2012b), "CFD simulation of mass transfer in membrane evaporators for concentration of aqueous solutions", Orient. J. Chem., 28(1), 83-87. crossref(new window)

28.
Marjani, A. and Shirazian, S. (2012c), "Mathematical modeling and cfd simulation of hydrocarbon purification using membrane technology", Orient. J. Chem., 28(1), 123-129. crossref(new window)

29.
Marjani, A. and Shirazian, S. (2012d), "Modeling of organic mixtures separation in dense membranes using finite element method (FEM)", Orient. J. Chem., 28(1), 41-46. crossref(new window)

30.
Marjani, A. and Shirazian, S. (2012e), "Theoretical studies on copper extraction by means of polymeric membrane contactors", Orient. J. Chem., 28(1), 23-28. crossref(new window)

31.
Marjani, A., Shirazi, Y. and Shirazian, S. (2011), "Investigation on the best conditions for purification of multiwall carbon nanotubes", Asian J. Chem., 23(7), 3205-3207.

32.
Marjani, A., Shirazian, S., Ranjbar, M. and Ahmadi, M. (2012), "Mathematical modeling of gas separation in flat-sheet membrane contactors", Orient. J. Chem., 28(1), 13-18. crossref(new window)

33.
Moghadassi, A., Marjani, A., Shirazian, S. and Moradi, S. (2011), "Gas separation properties of hollow-fiber membranes of polypropylene and polycarbonate by melt-spinning method", Asian J. Chem., 23(5), 1922-1924.

34.
Mohammadi, M., Kazemi, S.M. and Torkaman, R. (2015), "CFD simulation of water transport through porous membrane evaporators", Desalin. Water Treat., 57(23), 1-8.

35.
Mourgues, A., Hengl, N., Belleville, M.P., Paolucci-Jeanjean, D. and Sanchez, J. (2010), "Membrane contactor with hydrophobic metallic membranes: 1. Modeling of coupled mass and heat transfers in membrane evaporation", J. Membr. Sci., 355(1-2), 112-125. crossref(new window)

36.
Nii, S., Jebson, R.S. and Cussler, E.L. (2002), "Membrane evaporators", J. Membr. Sci., 201(1-2), 149-159. crossref(new window)

37.
Pishnamazi, M., Marjani, A., Shirazian, S. and Samipurgiri, M. (2012), "Mathematical modeling and numerical simulation of wastewater treatment unit using CFD", Orient. J. Chem., 28(1), 51-58. crossref(new window)

38.
Postelnicu, A. (2007), "Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects", Heat Mass Transfer., 43(6), 595-602. crossref(new window)

39.
Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of $CO_2$ capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine", Int. J. Greenhouse Gas Control, 15(0), 142-149. crossref(new window)

40.
Rezakazemi, M., Niazi, Z., Mirfendereski, M., Shirazian, S., Mohammadi, T. and Pak, A. (2011a), "CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor", Chem. Eng. J., 168(3), 1217-1226. crossref(new window)

41.
Rezakazemi, M., Shahverdi, M., Shirazian, S., Mohammadi, T. and Pak, A. (2011b), "CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation", Chem. Eng. J., 168(1), 60-67. crossref(new window)

42.
Rezakazemi, M., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor", Desalination, 285, 383-392. crossref(new window)

43.
Romero, J., Draga, H., Belleville, M.P., Sanchez, J., Combe-James, C., Dornier, M. and Rios, G.M. (2006), "New hydrophobic membranes for contactor processes--Applications to isothermal concentration of solutions", Desalination, 193(1-3), 280-285. crossref(new window)

44.
Shahid, M. and Pashley, R.M. (2014), "A study of the bubble column evaporator method for thermal desalination", Desalination, 351, 236-242. crossref(new window)

45.
Shirazian, S. and Ashrafizadeh, S.N. (2010a), "Mass transfer simulation of caffeine extraction by subcritical $CO_2$ in a hollow-fiber membrane contactor", Solvent Extr. Ion Exch., 28(2), 267-286. crossref(new window)

46.
Shirazian, S. and Ashrafizadeh, S.N. (2010b), "Mass transfer simulation of carbon dioxide absorption in a hollow-fiber membrane contactor", Sep. Sci. Technol., 45(4), 515-524. crossref(new window)

47.
Shirazian, S. and Ashrafizadeh, S.N. (2013), "3D modeling and simulation of mass transfer in vapor transport through porous membranes", Chem. Eng. Technol., 36(1), 177-185. crossref(new window)

48.
Shirazian, S., Moghadassi, A. and Moradi, S. (2009), "Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions", Simul. Modell. Pract. Theory., 17(4), 708-718. crossref(new window)

49.
Shirazian, S., Marjani, A. and Azizmohammadi, F. (2011a), "Prediction of $SO_2$ transport across ceramic membranes using finite element method (FEM)", Orient. J. Chem., 27(2), 485-490.

50.
Shirazian, S., Marjani, A. and Fadaei, F. (2011b), "Supercritical extraction of organic solutes from aqueous solutions by means of membrane contactors: CFD simulation", Desalination, 277(1-3), 135-140. crossref(new window)

51.
Shirazian, S., Rezakazemi, M., Marjani, A. and Moradi, S. (2012), "Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors", Desalination, 286, 290-295. crossref(new window)

52.
Sohrabi, M.R., Marjani, A., Moradi, S., Davallo, M. and Shirazian, S. (2011a), "Mathematical modeling and numerical simulation of $CO_2$ transport through hollow-fiber membranes", Appl. Math. Modell., 35(1), 174-188. crossref(new window)

53.
Sohrabi, M.R., Marjani, A., Davallo, M. and Shirazian, S. (2011b), "Preparation and simulation of polycarbonate hollow-fiber membrane for gas separation", Asian J. Chem., 23(1), 302-304.

54.
Sohrabi, M.R., Marjani, A., Moradi, S. and Shirazian, S. (2011c), "Simulation studies on $H_2S$ absorption in potassium carbonate aqueous solution using a membrane module", Asian J. Chem., 23(9), 4227-4228.

55.
Sohrabi, M.R., Marjani, A., Shirazian, S. and Moradi, S. (2011d), "Simulation of ethanol and acetone extraction from aqueous solutions in membrane contactors", Asian J. Chem., 23(9), 4229-4230.

56.
Ye, H., Das, D.B., Triffitt, J.T. and Cui, Z.F. (2006), "Modelling nutrient transport in hollow fibre membrane bioreactors for growing three-dimensional bone tissue", J. Membr. Sci., 272(1-2), 169-178. crossref(new window)