JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Mathematical modeling of humidification process by means of hollow fiber membrane contactor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Membrane Water Treatment
  • Volume 7, Issue 4,  2016, pp.297-311
  • Publisher : Techno-Press
  • DOI : 10.12989/mwt.2016.7.4.297
 Title & Authors
Mathematical modeling of humidification process by means of hollow fiber membrane contactor
Marjani, Azam; Baghdadi, Ali; Ghadiri, Mehdi;
 Abstract
Modeling and simulation of air humidification by hollow fiber membrane contactors are investigated in the current study. A computational fluid dynamic model was developed by solving the k-epsilon turbulence 2D Navier-Stokes equations as well as mass conservation equations for steady-state conditions in membrane contactors. Finite element method is used for the study of the air humidification under different operating conditions, with a focus on the humidity density, total mass transfer flux and velocity field. There has been good agreement between simulation results and experimental data obtained from literature. It is found that the enhancement of air stream decreases the outlet humidity from 0.392 to 0.340 (module 1) and from 0.467 to 0.337 (module 2). The results also indicated that there has been an increase in air velocity in the narrow space of shell side compared with air velocity wide space of shell side. Also, irregular arrangement has lower dead zones than regular arrangement which leads to higher water flux.
 Keywords
membrane processes;simulation;mass transfer;humidification;cross flow;
 Language
English
 Cited by
 References
1.
Barati, F., Ghadiri, M., Ghasemi, R. and Nobari, H.M. (2014), "CFD simulation and modeling ofmembraneassisted separation of organic compounds from wastewater", Chem. Eng. Technol., 37(1), 81-86. crossref(new window)

2.
Bergero, S. and Chiari, A. (2001), "Experimental and theoretical analysis of air humidification/humidification processes using hydrophobic capillary contactors", Appl. Therm. Eng., 21(11), 1119-1135. crossref(new window)

3.
Bergero, S. and Chiari, A. (2010), "Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system", Energ. Buildings, 42(11), 1976-1986. crossref(new window)

4.
Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002), Transport Phenomena, John Wiley & Sons, New York, NY, USA.

5.
Chao, C.-H. and Jen, T.-C. (2013), "A new humidification and heat control method of cathode air for a PEM fuel cell stack", Int. J. Heat Mass Tran., 58(1-2), 117-124. crossref(new window)

6.
Daraei, A., Aghasafari, P., Ghadiri, M. and Marjani, A. (2014), "Modeling and transport analysis of silver extraction in porous membrane extractors by computational methods", Trans. Indian Inst. Met., 67(2), 223-227. crossref(new window)

7.
Du, J.R., Liu, L., Chakma, A. and Feng, X. (2010), "Using poly(N,N-dimethylaminoethyl methacrylate)/ polyacrylonitrile composite membranes for gas dehydration and humidification", Chem. Eng Sci., 65(16), 4672-4681. crossref(new window)

8.
Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011), "Mass transfer modeling of ion transport through nanoporous media", Desalination, 281, 325-333. crossref(new window)

9.
Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011), "Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors", Desalination, 275(1-3), 126-132. crossref(new window)

10.
Fadaei, F., Hoshyargar, V., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects", Desalination, 284, 316-323. crossref(new window)

11.
Fasihi, M., Shirazian, S., Marjani, A. and Rezakazemi, M. (2012), "Computational fluid dynamics simulation of transport phenomena in ceramic membranes for $SO_2$ separation", Math. Comput. Model., 56(11-12), 278-286. crossref(new window)

12.
Ghadiri, M. and Ashrafizadeh, S.N. (2014), "Mass transfer in molybdenum extraction from aqueous solutions using nanoporous membranes", Chem. Eng. Technol., 37(4), 597-604. crossref(new window)

13.
Ghadiri, M. and Shirazian, S. (2013), "Computational simulation of mass transfer in extraction of alkali metals by means of nanoporous membrane extractors", Chem. Eng. Proces: Process Intensifi., 69, 57-62. crossref(new window)

14.
Ghadiri, M., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Mass transfer simulation of gold extraction in membrane Extractors", Chem. Eng. Technol., 35(12), 2177-2182. crossref(new window)

15.
Ghadiri, M., Fakhri, S. and Shirazian, S. (2013a), "Modeling and CFD simulation of water desalination using nanoporous membrane contactors", Ind. Eng. Chem. Res., 52(9), 3490-3498. crossref(new window)

16.
Ghadiri, M., Ghasemi Darehnaei, M., Sabbaghian, S. and Shirazian, S. (2013b), "Computational simulation for transport of priority organic pollutants through nanoporous membranes", Chem. Eng. Technol., 36(3), 507-512. crossref(new window)

17.
Ghadiri, M., Marjani, A. and Shirazian, S. (2013c), "Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors", Int. J. Greenhouse Gas Control, 13, 1-8. crossref(new window)

18.
Ghadiri, M., Abkhiz, V., Parvini, M. and Marjani, A. (2014a), "Simulation of membrane distillation for purifying water containing 1,1,1-Trichloroethane", Chem. Eng. Technol., 37(3), 543-550. crossref(new window)

19.
Ghadiri, M., Fakhri, S. and Shirazian, S. (2014b), "Modeling of water transport through nanopores of membranes in direct-contact membrane distillation process", Poly. Eng. Sci., 54(3), 660-666. crossref(new window)

20.
Ghadiri, M., Parvini, M. and Darehnaei, M.G. (2014c), "Simulation of zinc extraction from aqueous solutions using polymeric hollow-fibers", Poly. Eng. Sci., 54(10), 2222-2227. crossref(new window)

21.
Ghadiri, M., Asadollahzadeh, M. and Hemmati, A. (2015), "CFD simulation for separation of ion from wastewater in a membrane contactor", J. Water Process Eng., 6, 144-150. crossref(new window)

22.
Hemmati, M., Nazari, N., Hemmati, A. and Shirazian, S. (2015), "Phenol removal from wastewater by means of nanoporous membrane contactors", J. Ind. Eng. Chem., 21, 1410-1416. crossref(new window)

23.
Huang, S.-M. and Yang, M. (2014), "Heat and mass transfer enhancement in a cross-flow elliptical hollow fiber membrane contactor used for liquid desiccant air dehumidification", J. Membr. Sci., 449, 184-192. crossref(new window)

24.
Huang, S.-M., Yang, M., Yang, Y. and Yang, X. (2013), "Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank for air humidification", Int. J. Therm. Sci., 73, 28-37. crossref(new window)

25.
Kneifel, K., Nowak W.A., Hilke, R., Just, R. and Peinemann, K.V. (2006), "Hollow fiber membrane contactor for air humidity control: Modules and membranes", J. Membr. Sci., 276(1-2), 241-251. crossref(new window)

26.
Kong, I.M., Choi, J.W., Kim, S.I., Lee, E.S. and Kim, M.S. (2015), "Experimental study on the selfhumidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer", Appl. Energ., 145, 345-353. crossref(new window)

27.
Li, J. and Ito, A. (2008), "Dehumidification and humidification of air by surface-soaked liquid membrane module with triethylene glycol", J. Membr. Sci., 325(2), 1007-1012. crossref(new window)

28.
Miramini, S.A., Razavi, S.M.R., Ghadiri, M., Mahdavi, S.Z. and Moradi, S. (2013), "CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor", Chem. Eng. Proces.: Process Intensifi., 72, 130-136.

29.
Moradi, S., Rajabi, Z., Mahammadi, M., Salimi, M., Homami, S.S., Seydei, M.K. and Shirazian, S. (2013), "3 dimensional hydrodynamic analysis of concentric draft tube airlift reactors with different tube diameters", Math. Comput. Model., 57(5-6), 1184-1189. crossref(new window)

30.
Nosratinia, F., Ghadiri, M. and Ghahremani, H. (2014), "Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors", J. Ind. Eng. Chem., 20(5), 2958-2963. crossref(new window)

31.
Paul, S.S., Ormiston, S.J. and Tachie, M.F. (2008), "Experimental and numerical investigation of turbulent cross-flow in a staggered tube bundle", Int. J. Heat Fluid Flow, 29(2), 387-414. crossref(new window)

32.
Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of $CO_2$ capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine", Int. J. Greenhouse Gas Control, 15, 142-149. crossref(new window)

33.
Rezakazemi, M., Ghafarinazari, A., Shirazian, S. and Khoshsima, A. (2013a), "Numerical modeling and optimization of wastewater treatment using porous polymeric membranes", Poly. Eng. Sci., 53(6), 1272-1278. crossref(new window)

34.
Rezakazemi, M., Iravaninia, M., Shirazian, S. and Mohammadi, T. (2013b), "Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane", Poly. Eng. Sci., 53(7), 1494-1501. crossref(new window)

35.
Roostaiy Ghalehnooiy, M., Marjani, A. and Ghadiri, M. (2015), "Synthesis and characterization of polyurethane/poly(vinylpyridine) composite membranes for desulfurization of gasoline", RSC Advances, 5(116), 95994-96001. crossref(new window)

36.
Shirazian, S. and Ashrafizadeh, S.N. (2010), "Mass transfer simulation of caffeine extraction by subcritical $CO_2$ in a hollow-fiber membrane contactor", Solvent Extr. Ion Exc., 28(2), 267-286. crossref(new window)

37.
Shirazian, S. and Ashrafizadeh, S.N. (2011), "Near-critical extraction of the fermentation products by membrane contactors: A mass transfer simulation", Ind. Eng. Chem. Res., 50(4), 2245-2253. crossref(new window)

38.
Shirazian, S. and Ashrafizadeh, S.N. (2013), "3D modeling and simulation of mass transfer in vapor transport through porous membranes", Chem. Eng. Technol., 36(1), 177-185. crossref(new window)

39.
Shirazian, S., Marjani, A. and Rezakazemi, M. (2012a), "Separation of $CO_2$ by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling", Eng. Comput., 28(2), 189-198. crossref(new window)

40.
Shirazian, S., Pishnamazi, M., Rezakazemi, M., Nouri, A, Jafari, M. and Noroozi, S. (2012b), "Implementation of the finite element method for simulation of mass transfer in membrane contactors", Chem. Eng. Technol., 35(6), 1077-1084.

41.
Tahvildari, K., Zarabpour, A., Ghadiri, M. and Hemmati, A. (2014), "Numerical simulation studies on heat and mass transfer using vacuum membrane distillation", Poly. Eng. Sci., 54(11), 2553-2559. crossref(new window)

42.
Wu, Y., Peng, X., Liu, J., Kong, Q., Shi, B. and Tong, M. (2002), "Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes", J. Membr. Sci., 196(2), 179-183. crossref(new window)

43.
Zhang, L.-Z. (2012), "Coupled heat and mass transfer in an application-scale cross-flow hollow fiber membrane module for air humidification", Int. J. Heat Mass Trans., 55(21-22), 5861-5869. crossref(new window)

44.
Zhang, L.-Z. and Huang, S.-M. (2011), "Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification", Int. J. Heat Mass Trans., 54(5-6), 1055-1063. crossref(new window)

45.
Zhang, L.-Z. and Li, Z.-X. (2013), "Convective mass transfer and pressure drop correlations for cross-flow structured hollow fiber membrane bundles under low Reynolds numbers but with turbulent flow behaviors", J. Membr. Sci., 434, 65-73. crossref(new window)