JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation on site conditions for seismic stations in Romania using H/V spectral ratio
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Earthquakes and Structures
  • Volume 9, Issue 5,  2015, pp.983-997
  • Publisher : Techno-Press
  • DOI : 10.12989/eas.2015.9.5.983
 Title & Authors
Investigation on site conditions for seismic stations in Romania using H/V spectral ratio
Pavel, Florin; Vacareanu, Radu;
 Abstract
This research evaluates the soil conditions for seismic stations situated in Romania using the horizontal-to-vertical spectral ratio (HVSR). The strong ground motion database assembled for this study consists of 179 analogue and digital strong ground motion recordings from four intermediate-depth Vrancea seismic events with . In the first step of the analysis, the influence of the earthquake magnitude and source-to-site distance on the H/V curves is evaluated. Significant influences from both the earthquake magnitude and hypocentral distance are found especially for soil class A sites. Next, a site classification method proposed in the literature is applied for each seismic station and the soil classes are compared with those obtained from borehole data and from the topographic slope method. In addition, the success and error rates of this method are computed and compared with other studies from the literature. A more in-depth analysis of the H/V results is performed using data from seismic stations in Bucharest and a comparison of the free-field and borehole H/V curves is done for three seismic stations. The results show large differences between the free-field and the borehole curves. As a conclusion, the results from this study represent an intermediary step in the evaluation of the soil conditions for seismic stations in Romania and the need to perform more detailed soil classification analysis is highly emphasized.
 Keywords
soil class;strong ground motion records;Vrancea subcrustal earthquakes;spectral amplification;fundamental frequency;
 Language
English
 Cited by
1.
Investigation on the Variability of Simulated and Observed Ground Motions for Bucharest Area, Journal of Earthquake Engineering, 2017, 1  crossref(new windwow)
2.
Ground motion simulations for seismic stations in southern and eastern Romania and seismic hazard assessment, Journal of Seismology, 2017, 21, 5, 1023  crossref(new windwow)
 References
1.
Akkar, S. and Bommer, J.J. (2006), "Influence of long-period filter cut-off on elastic spectral displacements", Earthq. Eng. Struct. Dyn., 35(9), 1145-1165. crossref(new window)

2.
Aldea, A., Lungu, D., Vacareanu, R. and Arion, C. (2004), "Development of strong ground motion network in Romania and Bucharest instrumentation for site effects assessment", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada.

3.
Aldea, A., Kashima, T., Okawa, I., Poiata, N., Koyama, S. and Demetriu, S. (2007), "Free-field and borehole strong motion array in Bucharest, Romania", Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece.

4.
Bala, A., Aldea, A., Hannich, D., Ehret, D. and Raileanu, V. (2009), "Methods to assess the site effects based on in situ measurements in Bucharest city, Romania", Romanian Report. Phys., 61(2), 335-346.

5.
Barani, S., De Ferrari, R., Ferretti, G. and Eva, C. (2008), "Assessing the effectiveness of soil parameters for ground response characterization and soil classification", Earthq. Spectra, 24(3), 565-597. crossref(new window)

6.
BIGSEES - Bridging the gap between seismology and earthquake engineering: from the seismicity of Romania towards a refined implementation of seismic action EN 1998-1 in earthquake resistant design of buildings. http://infp.infp.ro/bigsees/default.htm

7.
Boore, D.M. and Bommer, J.J. (2005), "Processing of strong motion accelerograms: needs, options and consequence", Soil Dyn. Earthq. Eng., 25(2), 93-115. crossref(new window)

8.
Borcherdt, R.D. (1970), "Effects of local geology on ground motion near San Francisco Bay", Bull. Seismol. Soc. Am., 60(1), 29-61.

9.
Contantinescu, L. and Enescu, D. (1985), The Vrancea earthquakes from scientific and technologic point of view (in Romanian), Ed. Academiei, Bucharest, Romania.

10.
Di Alessandro, C., Bonilla, L.F., Boore, D.M., Rovelli, A. and Scotti, O. (2012), "Predominant-period site classification for response spectra prediction equations in Italy", Bull. Seismol. Soc. Am., 102(2), 680-695. crossref(new window)

11.
Ducellier, A., Kawase, H. and Matsushima, S. (2013), "Validation of a new velocity structure inversion method based on horizontal-to-vertical (H/V) spectral ratios of earthquake motions in the Tohoku area, Japan", Bull. Seismol. Soc. Am., 103(2A), 958-970. crossref(new window)

12.
EN 1998-1 (2004), Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, European Committee for Standardization.

13.
Fitzko, F., Costa, G., Delise, A. and Suhadolc, P. (2007), "Site effects analyses in the old city center of Trieste (NE Italy) using accelerometric data", J. Earthq. Eng., 11(1), 33-48. crossref(new window)

14.
Fukushima, Ylozani., Bonilla, L.F., Scotti, O. and Douglas, J. (2007), "Site classification using horizontalto-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations", J. Earthq. Eng., 11(5), 712-724. crossref(new window)

15.
Garcia-Fernandez, M. and Jimenez, M.J. (2012), "Site characterization in the Vega Baja, SE Spain, using ambient-noise H/V analysis", Bull. Earthq. Eng., 10(4), 1163-1191. crossref(new window)

16.
Garcia-Jerez, A., Navaroo, M., Alcala, F.J., Luzon, F., Perez-Ruiz, J., Enomoto, T., Vidal, F. and Ocana, E. (2007), "Shallow velocity structure using joint inversion of array and h/v spectral ratio of ambient noise: The case of Mula town (SE of Spain)", Soil Dyn. Earthq. Eng., 27(10), 907-919. crossref(new window)

17.
Ghasemi, H., Zare, M., Fukushima, Y. and Sinaeian, F. (2009), "Applying empirical methods in site classification using response spectral ratio (H/V): a case study on Iranian strong motion network (ISMN)", Soil Dyn. Earthq. Eng., 29(1), 121-132. crossref(new window)

18.
Goded, T., Buforn, E. and Macau, A. (2012), "Site effects evaluation in Malaga city's historical centre (Southern Spain)", Bull. Earthq. Eng., 10(3), 813-838. crossref(new window)

19.
Grecu, B., Radulian, M., Mandrescu, N. and Panza, G. (2007), "H/V spectral ratios technique application in the city of Bucharest: can we get rid of source effect?", JSEE Spring and Summer 2007, 9(1,2), 1-14.

20.
Grecu, B., Raileanu, V., Bala, A. and Tataru, D. (2011), "Estimation of site effects in the eastern part of Romania on the basis of H/V ratios of S and coda waves generated by Vrancea intermediate-depth earthquakes", Romanian Report. Phys., 56(3-4), 563-577.

21.
Guillier, B., Chatelain, J.L., Bonnefoy-Claudet, S. and Haghshenas, E. (2007), "Use of ambient noise: from spectral amplitude variability to H/V stability", J. Earthq. Eng., 11(6), 925-942. crossref(new window)

22.
Haghshenas, E., Bard, P.Y., Theodoulidis, N. and SESAME WP04 Team (2008), "Empirical evaluation of microtremor H/V spectral ratio", Bull. Earthq. Eng., 6(1), 78-108.

23.
Hellel, M., Chatelain, J.L., Guillier, B., Machane, D., Ben Salem, R., Oubaiche, E.H. and Haddoum, H. (2010), "Heavier damages without site effects and site effects with lighter damages: Boumerdes city (Algeria) after the May 2003 earthquake", Seismol. Res. Lett., 81(1), 37-43. crossref(new window)

24.
Herak, M., Allegretti, I., Herak, D., Kuk, K., Kuk, V., Maric, K., Markusic, S. and Stipcevic, J. (2010), "HVSR of ambient noise in Ston (Croatia): comparisonwith theoretical spectra and with the damage distribution after the 1996 Ston-Slano earthquake", Bull. Earthq. Eng., 8(3), 483-499. crossref(new window)

25.
Ismail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S. and Panza, G. (2012), "Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art", Tectonophys., 530, 50-79.

26.
Lang, D., Molina-Palacios, S., Lindholm, C. and Balan, S. (2012). "Deterministic earthquake damage and loss assessment for the city of Bucharest, Romania", J. Seismol., 16(1), 67-88. crossref(new window)

27.
Lozano, L., Herraiz, M. and Singh, S.K. (2009). "Site effect study in central Mexico using H/V and SSR techniques: Independence of seismic site effects on source characteristics", Soil Dyn. Earthq. Eng., 29(3), 504-516. crossref(new window)

28.
Mundepi, A.K., Galiana-Merino, J.J., Kamal and Lindholm, C. (2010), "Soil characteristics and site effect assessment in the city of Delhi (India) using H/V and f-k methods", Soil Dyn. Earthq. Eng., 30(7), 591-599. crossref(new window)

29.
Nakamura, Y. (1989), "A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface", Quarterly Report of the Railway Technical Research Institute, 30(1), 25-33.

30.
Nunziata, C. and Costanzo, M.R. (2014), "Ground motion modeling for site effects at L'Aquila and middle Aterno river valley (central Italy) for the MW 6.3, 2009 earthquake", Soil Dyn. Earthq. Eng., 61, 107-123.

31.
Oubaiche, E.H., Chatelain, J.L., Bouguern, A., Bensalem, R., Machane, D., Hellel, M., Khaldaoui, F. and Guillier, B. (2012), "Experimental relationship between ambient vibration H/V peak amplitude and shearwave velocity contrast", Seismol. Res. Lett., 83(6), 1038-1046. crossref(new window)

32.
Paudyal, Y.R., Yatabe, R., Bhandary, N.P. and Dahal, R.K. (2012), "A study of local amplification effect of soil layers on ground motion in the Kathmandu Valley using microtremor analysis", Earthq. Eng. Eng. Vib., 11(2), 257-268. crossref(new window)

33.
Pavel, F., Vacareanu, R., Arion, C. and Neagu, C. (2013), "Analysis of ground motions recorded in Bucharest during recent Vrancea earthquakes", Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria.

34.
Radulian, M., Mandrescu, N., Popescu, E., Utale, A. and Panza, G. (2000), "Characterization of Romanian seismic zones", Pure Appl. Geophys., 157, 57-77. crossref(new window)

35.
Ruizhi, W., Yefei, R. and Dacheng, S. (2011), "Improved HVSR site classification method for free-field strong motion stations validated with Wenchuan aftershock recordings", Earthq. Eng. Eng. Vib., 10(3), 325-337. crossref(new window)

36.
Theodoulidis, N., Cultrera, G., De Rubeis, V., Cara, F., Panou, A., Pagani, M. and Teves-Costa, P. (2008), "Correlation between damage distribution and ambient noise H/V spectral ratio: the SESAME project results", Bull. Earthq. Eng., 6(1), 109-140. crossref(new window)

37.
Wald, D.J. and Allen, T.I. (2007), "Topographic slope as a proxy for seismic site conditions and amplification", Bull. Seismol. Soc. Am., 97(5), 1379-1395. crossref(new window)

38.
Yamanaka, H., Aldea, A., Fukumoto, S., Poiata, N. and Albota, E. (2007), "Results from single-station and array microtremor measurements in Bucharest, Romania", Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, hessaloniki, Greece.

39.
Yamazaki, F. and Ansary, A.M. (1997), "Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization", Earthq. Eng. Struct. Dyn., 26(7), 671-689. crossref(new window)

40.
Zhao, J.X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P.G., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T. and Ogawa, H. (2006), "An empirical site-classification method for strong-motion stations in Japan using H/V response ratio", Bull. Seismol. Soc. Am., 96(3), 914-925. crossref(new window)