JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Earthquakes and Structures
  • Volume 10, Issue 3,  2016, pp.681-697
  • Publisher : Techno-Press
  • DOI : 10.12989/eas.2016.10.3.681
 Title & Authors
Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat
Zenkour, Ashraf M.; Abouelregal, Ahmed E.;
 Abstract
The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.
 Keywords
thermoelasticity;phase-lags;non-simple;solid cylinder;variable thermal conductivity;
 Language
English
 Cited by
1.
Thermoelastic Interactions in a Rotating Infinite Orthotropic Elastic Body with a Cylindrical Hole and Variable Thermal Conductivity, Archive of Mechanical Engineering, 2017, 64, 4  crossref(new windwow)
 References
1.
Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermo-elastic response of an infinite functionally graded cylinder", Compos. Struct., 96, 89-96. crossref(new window)

2.
Biot, M. (1956), "Thermoelasticity and irreversible thermo-dynamics", J. Appl. Phys., 27(3), 240-253. crossref(new window)

3.
Carroll, M.M. (1969), "Plane waves in non-simple elastic solids", Int. J. Solid. Struct., 5(2), 109-116. crossref(new window)

4.
Chen, P.J., Gurtin, M.E. and Willams, W.O. (1969), "On the thermodynamics of non-simple Elastic material with two temperatures", Zeitschrift fur Angew Mathematik und Physik, 20(1), 107-112. crossref(new window)

5.
Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift fur Angew Mathematik und Physik, 19(4), 614-627. crossref(new window)

6.
Ciarletta, M. (1996), "Thermoelasticity of nonsimple materials with thermal relaxation", J. Therm. Stress., 19(8), 731-748. crossref(new window)

7.
Das, P. and Kanoria, M. (2012), "Two-temperature magneto-thermo-elasticity response in a perfectly conducting medium based on GN III model", Int. J. Pure Appl. Math., 81(2), 199-229.

8.
Dhar, A.K. (1985), "Mechanical shock problem of coupled thermoelasticity in a non-simple elastic material", Indian J. pure appl. Math., 16(2), 174-178.

9.
Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. crossref(new window)

10.
Green, A.E. and Rivlin, R.S. (1964), "Simple force and stress multipoles", Arch Ration. Mech. Anal., 16(5), 325-353.

11.
Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transform", J. Comp. Appl. Math., 10(1), 113-132. crossref(new window)

12.
Lesana, D. (1983), "Thermoelasticity of nonsimple materials", J. Therm. Stress., 6(2-4), 167-188. crossref(new window)

13.
Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. crossref(new window)

14.
Lotfy, Kh. (2014), "Two temperature generalized magneto-thermoelastic interactions in an elastic medium under three theories", Appl. Math. Comput., 227, 871-888.

15.
Nowinski, J.L. (1978), Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff Int., Publishing Comp., Netherlands.

16.
Prasad, R., Kumar, R. and Mukhopadhyay, S. (2010), "Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags", Int. J. Eng. Sci., 48(12), 2028-2043. crossref(new window)

17.
Quintanilla, R. (2004), "On existence, structural stability, convergence and spatial behavior in thermoelastic with two temperature", Acta Mech., 168(1-2), 161-173.

18.
Tzou, D. (1995), "A unified field approach for heat conduction from macro-to micro-scales", J. Heat Transfer, 117(1), 8-16. crossref(new window)

19.
Warren, W.E. and Chen, P.J. (1973), "Wave propagation in the two temperature theory of thermoelasticity", Acta Mech., 16(1-2), 21-23. crossref(new window)

20.
Wozniak, C. (1967), "Thermoelasticity of non-simple orinted materials", Int. J. Eng. Sci., 5(8), 605-612. crossref(new window)

21.
Quintanilla, R. (2003), "Thermoelasticity without energy dissipation of nonsimple materials", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 83(3), 172-180.

22.
Zenkour, A.M. and Abbas, I.A. (2014), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method", J. Vib. Control, 20, 1907-1919. crossref(new window)

23.
Zenkour, A.M. and Abbas I.A. (2015), "Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation", J. Magnet. Magnet. Mater., 395, 123-129. crossref(new window)

24.
Zenkour, A.M. and Abouelregal, A.E. (2014a), "Nonlocal thermoelastic vibrations for variable thermal conductivity nanobeams due to harmonically varying heat", J. Vib., 16(8), 3665-3678.

25.
Zenkour, A.M. and Abouelregal, A.E. (2014b), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. crossref(new window)

26.
Zenkour, A.M., Mashat, D.S. and Abouelregal, A.E. (2013), "The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties", Acta Mechanica Solida Sinica, 26(6), 659-670. crossref(new window)

27.
Zenkour, A.M. (2014), "On the magneto-thermo-elastic responses of FG annular sandwich disks", Int. J. Eng. Sci., 75, 54-66. crossref(new window)