High conservative nonlinear vibration equations by means of energy balance method

- Journal title : Earthquakes and Structures
- Volume 11, Issue 1, 2016, pp.129-140
- Publisher : Techno-Press
- DOI : 10.12989/eas.2016.11.1.129

Title & Authors

High conservative nonlinear vibration equations by means of energy balance method

Bayat, Mahmoud; Pakar, Iman; Bayat, Mahdi;

Bayat, Mahmoud; Pakar, Iman; Bayat, Mahdi;

Abstract

This paper presents He`s Energy Balance Method (EBM) for solving nonlinear oscillatory differential equations. Three strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with numerical solutions using Runge-Kutta`s algorithm. The effects of different important parameters on the nonlinear response of the systems are studied. The results show the presented method is potentially to solve high nonlinear vibration equations.

Keywords

Energy Balance Method (EBM);Runge- Kutta`s Method (RKM);nonlinear vibrations;

Language

English

References

1.

Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421.

2.

Andrianov, I.V., Awrejcewicz, J. and Manevitch, L.I. (2004), Asymptotical Mechanics of thin-walled Structures, Springer - Verlag Berlin Heidelberg, Germany.

3.

Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., 11(6), 489-504.

4.

Bayat, M. and Pakar, I. (2013a), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52.

5.

Bayat, M. and Pakar, I. (2012a), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347.

6.

Bayat, M., Pakar, I. and Domaiirry, G. (2012b), "Recent developments of Some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin Am. J. Solid. Struct., 9(2), 145-234 .

7.

Bayat, M., Pakar, I. and Cveticanin, L. (2014d), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities : an analytical approach", Mechanism Machine Theory, 77, 50-58.

8.

Bayat, M., Pakar, I. and Cveticanin, L. (2014e), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50.

9.

Bayat, M. and Pakar, I. (2013c), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420.

10.

Bayat, M., Pakar, I. and Bayat, M. (2013b), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521.

11.

Bayat, M. and Abdollahzadeh, G. (2011a), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solid. Struct., 8(4), 429-443.

12.

Bayat, M. and Abdollahzadeh, G. (2011b), "Analysis of the steel braced frames equipped with ADAS devices under the far field records", Latin Am. J. Solid. Struct., 8(2), 163-181.

13.

Bayat, M., Bayat, M. and Pakar, I. (2014f), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544.

14.

Bayat, M., Bayat, M. and Pakar, I. (2014a), "The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading", Steel Compos. Struct., 17(1), 123-131.

15.

Bayat, M., Bayat, M. and Pakar, I. (2014c), "Forced nonlinear vibration by means of two approximate analytical solutions", Struct. Eng. Mech., 50(6), 853-862.

16.

Bayat, M., Bayat, M. and Pakar, I. (2014g), "Accurate analytical solutions for nonlinear oscillators with discontinuous", Struct. Eng. Mech., 51(2), 349-360.

17.

Bayat, M., Pakar, I. and Bayat, M. (2013b), "On the large amplitude free vibrations of axially loaded Euler- Bernoulli beams", Steel Compos. Struct., 14(1), 73-83.

18.

Bayat, M., Pakar, I. and Bayat, M. (2014b), "An accurate novel method for solving nonlinear mechanical systems", Struct. Eng. Mech., 51(3), 519-530.

19.

Bayat, M., Pakar, I. and Emadi, A. (2013a), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831.

20.

Bor-Lih, K. and Cheng-Ying, L. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlin. Anal., 70(4), 1732-1737.

21.

Cunedioglu ,Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130.

22.

Cveticanin, L. (2012), "A review on dynamics of mass variable systems", J. Serbian Soc. Comput. Mech., 6(1), 56-74.

23.

Cveticanin, L. (2015), "A solution procedure based on the Ateb function for a two-degree-of-freedom oscillator", J. Sound Vib., 346, 298-313.

24.

Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos, Soliton. Fract., 36(1), 157-166.

25.

Evakin, A.Yu. and Kalamkarov, A. (2001), "Analysis of large deflection equilibrium state of composite shells of revolution. Part 1. General model and singular perturbation analysis", Int. J. Solid. Struct., 38(50- 51), 8961-8974.

26.

Filippov, S.B. (1999), Theory of conjugated and reinforced shells, St. Petersburg state university. (in Russian)

27.

Filobello-Nino, U.H., Vazquez-Leal, B., Benhammouda, A., Perez-Sesma, V., Jimenez-Fernandez, J., Cervantes-Perez, A., Sarmiento-Reyes, J., Huerta-Chua, L., Morales-Mendoza and M., Gonzalez-Lee (2015), "Analytical solutions for systems of singular partial differential-algebraic equations", Discrete Dyn. Nat. Soc., Article ID 752523, 9 pages.

28.

Grigolyuk, E.I. and Kabanov, V.V. (1987), Stability of shells, Nauka, Moscow. (in Russian)

29.

Han, S. (1965), "On the free vibration of a beams on a nonlinear elastic foundation", Trans. ASME J. Appl. Mech., 32(2), 445-447.

30.

He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos, Solitons Fract., 34(5), 1430-1439.

31.

He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111.

32.

He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314.

33.

He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlin. Sci. Numer. Simul., 9(2), 211-212.

34.

Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Curr. Appl. Phys., 10(2), 484-486.

35.

Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Curr. Appl. Phys., 10(1), 104-112.

36.

Nayfeh.A.H. (1973), Perturbation methods, volume 6, Wiley Online Library.

37.

Odibat, Z., Momani, S. and Suat Erturk, V. (2008), "Generalized differential transform method: application to differential equations of fractional order", Appl. Math. Comput., 197(2), 467-477.

38.

Pakar, I. and Bayat, M. (2013a), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151.

39.

Pakar, I. and Bayat, M. (2013b), "An analytical study of nonlinear vibrations of buckled Euler Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52.

40.

Pakar, I., Bayat, M. and Bayat, M. (2011), "Analytical evaluation of the nonlinear vibration of a solid circular sector object", Int. J. Phys. Sci., 6(30), 6861-6866.

41.

Pakar, I., Bayat, M. and Bayat, M. (2014a), "Nonlinear vibration of thin circular sector cylinder: An analytical approach", Steel Compos. Struct., 17(1), 133-143.

42.

Pakar, I., Bayat, M. and Bayat, M. (2014b), "Accurate periodic solution for nonlinear vibration of thick circular sector slab", Steel Compos. Struct., 16(5), 521-531.

43.

Radomirovic, D. and Kovacic, I. (2015), "An equivalent spring for nonlinear springs in series", Eur. J. Phys., 36(5), 055004.

44.

Rajasekaran, S. (2013), "Free vibration of tapered arches made of axially functionally graded materials", Struct. Eng. Mech., 45(4), 569-594.

45.

Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh, G.R. (2011), "Solution of free non-linear vibration of beams", Int. J. Phys. Sci., 6(7), 1628-1634.

46.

Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133.

47.

Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108.

48.

Xu, L. (2010), "Application of Hamiltonian approach to an oscillation of a mass attached to a stretched elastic wire", Comput. Math. Appl., 15(5), 901-906.

49.

Xu, Nan and Zhang, A. (2009), "Variational approachnext term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463.

50.

Xu, R., Li, D.-X., Jiang, J.-P. and Liu, W. (2015), "Nonlinear vibration analysis of membrane SAR antenna structure adopting a vector form intrinsic finite element", J. Mech., 31(3), 269-277.

51.

Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlin. Sci. Numer. Simul., 10(10), 1361-1368.