JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis and research on teeth thermodynamic coupling contact of gear transmission system
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Coupled systems mechanics
  • Volume 4, Issue 3,  2015, pp.237-249
  • Publisher : Techno-Press
  • DOI : 10.12989/csm.2015.4.3.237
 Title & Authors
Analysis and research on teeth thermodynamic coupling contact of gear transmission system
Wang, Xigui; Wang, Yongmei; Zhao, Xuezeng; Li, Xinglin;
 Abstract
In the gear meshing process, gear temperature field concerns the meshing surface friction, the friction heat depends on the contact pressure, the contact pressure is affected by the elastic deformation of gears and the temperature field caused by the thermal deformation, so the temperature field, stress field and displacement field should be mutual coupling. It is necessary to consider in meshing gear pair in the operation process of thermodynamic coupling contact stress (TCCS) and thermodynamic coupling deformation (TCD), and based on thermodynamic coupling analysis (TCA) of gear teeth deformation.
 Keywords
gear;temperature field;TCCS;TCD;TCA;
 Language
English
 Cited by
 References
1.
Bendavid, A., Martin, P.J., Randeniya, L., Amin, M.S. and Rohanizadeh, R. (2010), "The properties of fluorine-containing diamond-like carbon films prepared by pulsed DC plasma-activated chemical vapour deposition", Diamond Relat. Mater., 19, 1466-1471. crossref(new window)

2.
Czichos, I.H. (2010), Tribologie-Handbuch, (3th Ed.), Praxis, Berlin.

3.
De Mello, J.D.B., Binder, R., Demas, N.G. and Polycarpou, A.A. (2009), "Polycarpou. Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating", Wear, 267, 907-915. crossref(new window)

4.
De Mello, J.D.B., Binder, C., Hammes, G. and Klein, A.N. (2013), "Effect of the metallic matrix on the sliding wear of plasma assisted debinded and sintered MIM self-lubricating steel", Wear, 301, 648-655. crossref(new window)

5.
Efremov, E.V., Ariese, F. and Gooijer, C. (2008), "Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential", Anal. Chim. Acta., 606, 119-134. crossref(new window)

6.
Escobar Galindo, R., Gago, R., Albella, J.M. and Lousa, A. (2009), "Comparative depth-profiling analysis of nanometer-metal multilayers by ion-probing techniques", TrAC Trends Anal. Chem., 28, 494-505. crossref(new window)

7.
Hammes, G., Schroeder, R., Binder, C., Klein, A.N. and de Mello, J.D.B. (2014), "Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites", Tribol. Int., 70, 119-127. crossref(new window)

8.
Hanesch, M. (2009), "Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies", Geophys. J. Int., 177, 941-948. crossref(new window)

9.
Gayathri, S., Kumar, N., Krishnan, R., Ravindran, T.R., Dash, S. and Tyagi, A.K. et al. (2012), "Tribological properties of pulsed laser deposited DLC/TM (TM=Cr, Ag, Ti and Ni) multilayers", Tribol. Int., 53, 87-97. crossref(new window)

10.
Kim, H.K., Park, S.H., Lee, H.G., Kim, D.R. and Lee, Y.H. (2007), "Approximation of contact stress for a compressed and laterally one side restrained O-ring", Eng. Fail Anal., 14(8), 1680-1692. crossref(new window)

11.
Marciano, F.R., Almeida, E.C., Lima-Oliveira, D.A., Corat, E.J. and Trava-Airoldi, V.J. (2010), "Improvement of DLC electrochemical corrosion resistance by addiction of fluorine", Diamond Relat. Mater., 19, 537-540. crossref(new window)

12.
Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J., Sildos, I. and Pars, M. (2007), "Raman scattering in nanosized nickel oxide NiO", J. Phys. Conf. Ser., 93, 012039. crossref(new window)

13.
Mishra, M. et al. (2012), "Friction model for single-asperity elastic-plastic contacts", Phys. Rev. B: Condens. Matter., 86, 4.

14.
Mishra, M. and Szlufarska, I. (2012), "Analytical model for plowing friction at nanoscale", Tribol. Lett., 45 (3), 417-426. crossref(new window)

15.
Mo, Y.F., Turner, K.T. and Szlufarska, I. (2009), "Friction laws at the nanoscale", Nature, 457(7233), 1116-1119. crossref(new window)

16.
Mo, Y.F. and Szlufarska, I. (2010), "Roughness picture of friction in dry nanoscale contacts", Phys. Rev. B: Condens. Matter., 81, 3.

17.
Nikas, G.K. (2010), "Eighty years of research on hydraulic reciprocating seals: review of tribological studies and related topics since the 1930s", Proceedings of the Inst. Mech. Eng. Part J J Eng Tribol., 224 (1), 1-23.

18.
Radhika, R., Kumar, N., Kozakov, A.T., Sankaran, K.J., Dash, S. and Tyagi, A.K. et al. (2014), "Role of transfer layer on tribological properties of nanocrystalline diamond nanowire film sliding against alumina allotropes", Diamond Relat. Mater., 48, 6-18. crossref(new window)

19.
Rout, T.K. (2007), "Nanolayered oxide on a steel surface reduces surface reactivity: Evaluation by glow discharge optical emission spectroscopy (GDOES)", Scripta Mater., 56(7), 573-576. crossref(new window)

20.
Silverio, M., Binder, R. and De Mello, J.D.B. (2011), "Estudo Tribologico de Revestimentos de DLC Com Gases Refrigerantes HFC134A e HC600A", Tecnolem. Metale. Mater., 8, 64-72.

21.
Wilke, M., Teichert, G., Gemma, R., Pundt, A., Kirchheim, R. and Romanus, H. et al. (2011), "Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films", Thin Solid Films., 520, 1660-1667. crossref(new window)

22.
Yang, B., Salant, R.F. and Soft, E.H.L. (2009), "Simulations of U-cup and step hydraulic rod seals", J. Tribol. - T. ASME, 131(2), 02150.

23.
Yang, L. and Martini, A. (2013), "Nano-scale roughness effects on hysteresis in micro-scale adhesive contact", Tribol. Int., 58, 40-46. crossref(new window)

24.
Yang, L.Q. and Martini, A. (2013), "Nano-scale roughness effects on hysteresis in micro-scale adhesive contact", Tribol. Int., 58, 40-46. crossref(new window)

25.
Zhang, Y.S., Han, Z. and Lu, K. (2008), "Fretting wear behavior of nanocrystalline surface layer of copper under dry condition", Wear, 265(5-8), 396-401. crossref(new window)