Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

- Journal title : Advances in nano research
- Volume 3, Issue 3, 2015, pp.143-168
- Publisher : Techno-Press
- DOI : 10.12989/anr.2015.3.3.143

Title & Authors

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

Sutrakar, Vijay Kumar; Subramanya, N.; Mahapatra, D. Roy;

Sutrakar, Vijay Kumar; Subramanya, N.; Mahapatra, D. Roy;

Abstract

Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Keywords

molecular dynamics simulations;single crystal;crack growth;stresses;traction-separation law;

Language

English

References

1.

Abraham, F.F. and Broughton, J.Q. (1998), "Large-scale simulations of brittle and ductile failure in fcc crystals", Comput. Mater. Sci., 10, 1-9.

2.

Amarillas, A.P. and Garzon, I.L. (1996), "Microstructural analysis of simulated liquid and amorphous Ni", Phys. Rev. B, 53, 8363.

3.

Bhatia, M.A., Solanki, K.N., Moitra, A. and Tschopp, M.A. (2011), "The effect of crystallographic orientation on void growth: A molecular dynamics study", Min. Metal. Mat. Soc. ASM Int., 44A, 617-626.

4.

Bringa, E.M., Traiviratana, S. and Meyers, M.A. (2010), "Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects", Acta Materialia, 58, 4458-4477.

5.

Clarke, A.S. and Jonsson, H. (1993), "Structural changes accompanying densification of random hard-sphere packings", Phys. Rev. E, 47, 3975.

6.

Dantuluri, V., Maiti, S., Geubelle, P.H., Patel, R. and Kilic, H. (2007), "Cohesive modeling of delamination in Z-pin reinforced composite laminates", Comp. Sci. Tech., 67(3-4), 616-631.

7.

Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29, 6443-6453.

8.

Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8, 100-104.

9.

Faken, D. and Jonsson, H. (1994), "Systematic analysis of local atomic structure combined with 3D computer graphics", Comput. Mater. Sci., 2, 279-586.

10.

Ganesh, P. and Widom, M. (2006), "Signature of nearly icosahedral structures in liquid and supercooled liquid copper", Phys. Rev. B, 74, 134205.

11.

Garrison, W.M. Jr. and Moody, N.R. (1987), "Ductile fracture", J. Phys. Chem. Solid., 48, 1035-1074.

12.

Garzon, I.L. and Amarillas, A.P. (1996), "Structural and vibrational analysis of amorphous Au 55 clusters", Phys. Rev. B, 54, 11796.

13.

Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Phil. Trans. R. Soc. Lond. A, 221, 163-198.

14.

Holland, D. and Marder, M. (1999), "Cracks and atoms", Adv. Mater., 10(11), 793-806.

15.

Honeycutt, J.D. and Andersen, H.C. (1987), "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters", J. Phys. Chem., 91(19), 4950-4963.

16.

Hoover, W.G. (1985), "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A, 31, 1695-1697.

17.

Horstemeyer, M.F. and Baskes, M.I. (1999), "Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses", ASME Tran. J. Eng. Mater. Tech., 121, 114-119.

18.

Irwin, G.R. (1948), "Fracture dynamics", Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland, OH.

19.

Irwin, G.R. (1956), "Plastic zone near a crack and fracture toughness", Proceedings of the Sagamore Conference on Strength Limitations of Metals, NY Syracuse University Press, 2, 289-305.

20.

Irwin, G.R. (1957), "Analysis of stresses and strain near the end of a crack traversing a plate", Tran. ASME Ser. E: J. Appl. Mech., 24, 361-364.

21.

Jakse, N. and Pasturel, A. (2004), "Ab initio molecular dynamics simulations of local structure of supercooled Ni", J. Chem. Phys., 120(13), 6124-6127.

22.

Jonsson, H. and Andersen, H.C. (1988), "Icosahedral ordering in the Lennard-Jones liquid and glass", Phys. Rev. Lett., 60, 2295.

23.

Krull, H. and Yuan, H. (2011), "Suggestions to the cohesive traction-separation law from atomistic simulations", J. Eng. Fract. Mech., 78, 525-533.

24.

Kubair, D.V., Geubelle, P.H. (2003), "Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture", Int. J. Solid. Struct., 40, 3853-3868.

25.

LAMMPS (2013), http://www.cs.sandia.gov/-sjplimp/lammps.html

26.

Li, T.X., Yin, S.Y., Ji, Y.L., Wang, B.L., Wang, G.H. and Zhao, J.J. (2000), "A genetic algorithm study on the most stable disordered and ordered configurations of Au 38-55", Phys. Lett. A, 267(5-6), 403-407.

27.

Liu, X.Y., Ercolessi, F. and Adams, J.B. (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Model. Simul. Mater. Sci. Eng., 12, 665-670.

28.

McClintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes", J. Appl. Mech., 35(2), 363-371.

29.

Needleman, A. (1987), "A continuum model for void nucleation by inclusion debonding", J. Appl. Mech., 54, 525-531.

30.

Needleman, A. (1990), "An analysis of decohesion along an imperfect interface", Int. J. Fract., 42, 21-40.

31.

Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, 511-519.

32.

Paliwal, B. and Cherkaoui, M. (2013), "An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth", Int. J. Solid. Struct., 50, 3346-3360.

33.

Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19.

34.

Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J. and Gullett, P.M. (2006), "A molecular dynamics study of void growth and coalescence in single crystal nickel", Int. J. Plast., 22, 257-278.

35.

Ren, G.W., Tang, T.G. and Li, Q.Z. (2012), "Atomistic study of anisotropic effect on two-dimensional dynamic crack", Front. Mater. Sci., 6(1), 87-96.

36.

Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power-law hardening material", J. Mech. Phys. Solid., 16, 1-12.

37.

Rosch, F., Trebin, H.R. and Gumbsch, P. (2006), "Fracture of complex metallic alloys: An atomistic study of model systems", Phil Mag., 86, 1015-1020.

38.

Le Roy, G., Embury, J.D., Edwards, G. and Ashby, M.F. (1981), "A model of ductile fracture based on the nucleation and growth of voids", Acta Metallurgica, 29, 1509-1522.

39.

Schiotz, J., DiTolla, F.D. and Jacobsen, K.W. (1998b), "Softening of nanocrystalline metals at very small grain sizes", Nature, 391, 561-563.

40.

Schiotz, J., Vegge, T., DiTolla, F.D. and Jacobsen, K.W. (1999), "Atomic-scale simulations of the mechanical deformation of nanocrystalline metals", Phys. Rev. B, 60, 11971.

41.

Sorensen, M.R., Brandbyge, M. and Jacobsen, K.W. (1998a), "Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms", Phys. Rev. B, 57, 3283.

42.

Swope, W.C., Andersen, H.C., Berens, P.H. and Wilson, K.R. (1982), "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters", J. Chem. Phys., 76, 637-649.

43.

Tai, W.H. and Yang, B.X. (1986), "A new microvoid-damage model for ductile fracture", Eng. Fract. Mech., 25, 377-384.

44.

Thomason, P.F. (1998), "A view on ductile-fracture modelling", Fatig. Fract. Eng. Mater. Struct., 21(9), 1105-1122.

45.

Tomar, V., Zhai, J. and Zhou, M. (2004), "Bounds for element size in a variable stiffness cohesive finite element model", Int. J. Numer. Meth. Eng., 61, 1894-1920.

46.

Tvergaard, V. (2001), "Crack growth predictions by cohesive zone model for ductile fracture", J. Mech. Phys. Solid., 49, 2191-2207.

47.

Westergaard, H.M. (1939), "Bearing pressures and cracks", J. Appl. Mech., 6, 49-53.

48.

Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", Trans. AMSE J. Appl. Mech., 24, 109-114.

49.

Wu, W. and Yao, Z. (2012), "Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel", J. Theo. Appl. Fract. Mech., 62, 67-75.

50.

Xu, S. and Deng, X. (2008), "Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal", Nanotechnology, 19, 115705.

51.

Xue, L. and Wierzbicki, T. (2008), "Ductile fracture initiation and propagation modeling using damage plasticity theory", J. Eng. Fract. Mech., 75, 3276-3293.

52.

Yamakov, V., Saether, E., Phillips, D.R. and Glaessgen, E.H. (2006), "Molecular-dynamics simulationbased cohesive zone representation of intergranular fracture processes in aluminum", J. Mech. Phys. Solid., 54, 1899-1928.

53.

Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. and Gleiter, H. (2002), "Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation", Nature Mater., 1(1), 45-49.

54.

Yavari, A.R., Lewandowski, J.J. and Eckert, J. (2007), "Mechanical properties of bulk metallic glasses", Mrs Bull., 32(08), 635-638.

55.

Zeng, X. and Li, S. (2010), "A multiscale cohesive zone model and simulations of fractures", Comput. Meth. Appl. Mech. Eng., 199, 547-556.

56.

Zhou, X.W., Moody, N.R., Jones, R.E., Zimmerman, J.A. and Reedy, E.D. (2009), "Molecular-dynamicsbased cohesive zone law for brittle interfacial fracture under mixed loading conditions: effects of elastic constant mismatch", Acta Materialia, 57(16), 4671-4686.