JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Advances in nano research
  • Volume 3, Issue 3,  2015, pp.143-168
  • Publisher : Techno-Press
  • DOI : 10.12989/anr.2015.3.3.143
 Title & Authors
Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study
Sutrakar, Vijay Kumar; Subramanya, N.; Mahapatra, D. Roy;
 Abstract
Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.
 Keywords
molecular dynamics simulations;single crystal;crack growth;stresses;traction-separation law;
 Language
English
 Cited by
 References
1.
Abraham, F.F. and Broughton, J.Q. (1998), "Large-scale simulations of brittle and ductile failure in fcc crystals", Comput. Mater. Sci., 10, 1-9. crossref(new window)

2.
Amarillas, A.P. and Garzon, I.L. (1996), "Microstructural analysis of simulated liquid and amorphous Ni", Phys. Rev. B, 53, 8363. crossref(new window)

3.
Bhatia, M.A., Solanki, K.N., Moitra, A. and Tschopp, M.A. (2011), "The effect of crystallographic orientation on void growth: A molecular dynamics study", Min. Metal. Mat. Soc. ASM Int., 44A, 617-626.

4.
Bringa, E.M., Traiviratana, S. and Meyers, M.A. (2010), "Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects", Acta Materialia, 58, 4458-4477. crossref(new window)

5.
Clarke, A.S. and Jonsson, H. (1993), "Structural changes accompanying densification of random hard-sphere packings", Phys. Rev. E, 47, 3975.

6.
Dantuluri, V., Maiti, S., Geubelle, P.H., Patel, R. and Kilic, H. (2007), "Cohesive modeling of delamination in Z-pin reinforced composite laminates", Comp. Sci. Tech., 67(3-4), 616-631. crossref(new window)

7.
Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29, 6443-6453. crossref(new window)

8.
Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solid., 8, 100-104. crossref(new window)

9.
Faken, D. and Jonsson, H. (1994), "Systematic analysis of local atomic structure combined with 3D computer graphics", Comput. Mater. Sci., 2, 279-586. crossref(new window)

10.
Ganesh, P. and Widom, M. (2006), "Signature of nearly icosahedral structures in liquid and supercooled liquid copper", Phys. Rev. B, 74, 134205. crossref(new window)

11.
Garrison, W.M. Jr. and Moody, N.R. (1987), "Ductile fracture", J. Phys. Chem. Solid., 48, 1035-1074. crossref(new window)

12.
Garzon, I.L. and Amarillas, A.P. (1996), "Structural and vibrational analysis of amorphous Au 55 clusters", Phys. Rev. B, 54, 11796. crossref(new window)

13.
Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Phil. Trans. R. Soc. Lond. A, 221, 163-198. crossref(new window)

14.
Holland, D. and Marder, M. (1999), "Cracks and atoms", Adv. Mater., 10(11), 793-806.

15.
Honeycutt, J.D. and Andersen, H.C. (1987), "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters", J. Phys. Chem., 91(19), 4950-4963. crossref(new window)

16.
Hoover, W.G. (1985), "Canonical dynamics: equilibrium phase-space distributions", Phys. Rev. A, 31, 1695-1697. crossref(new window)

17.
Horstemeyer, M.F. and Baskes, M.I. (1999), "Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses", ASME Tran. J. Eng. Mater. Tech., 121, 114-119. crossref(new window)

18.
Irwin, G.R. (1948), "Fracture dynamics", Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland, OH.

19.
Irwin, G.R. (1956), "Plastic zone near a crack and fracture toughness", Proceedings of the Sagamore Conference on Strength Limitations of Metals, NY Syracuse University Press, 2, 289-305.

20.
Irwin, G.R. (1957), "Analysis of stresses and strain near the end of a crack traversing a plate", Tran. ASME Ser. E: J. Appl. Mech., 24, 361-364.

21.
Jakse, N. and Pasturel, A. (2004), "Ab initio molecular dynamics simulations of local structure of supercooled Ni", J. Chem. Phys., 120(13), 6124-6127. crossref(new window)

22.
Jonsson, H. and Andersen, H.C. (1988), "Icosahedral ordering in the Lennard-Jones liquid and glass", Phys. Rev. Lett., 60, 2295. crossref(new window)

23.
Krull, H. and Yuan, H. (2011), "Suggestions to the cohesive traction-separation law from atomistic simulations", J. Eng. Fract. Mech., 78, 525-533. crossref(new window)

24.
Kubair, D.V., Geubelle, P.H. (2003), "Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture", Int. J. Solid. Struct., 40, 3853-3868. crossref(new window)

25.
LAMMPS (2013), http://www.cs.sandia.gov/-sjplimp/lammps.html

26.
Li, T.X., Yin, S.Y., Ji, Y.L., Wang, B.L., Wang, G.H. and Zhao, J.J. (2000), "A genetic algorithm study on the most stable disordered and ordered configurations of Au 38-55", Phys. Lett. A, 267(5-6), 403-407. crossref(new window)

27.
Liu, X.Y., Ercolessi, F. and Adams, J.B. (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Model. Simul. Mater. Sci. Eng., 12, 665-670. crossref(new window)

28.
McClintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes", J. Appl. Mech., 35(2), 363-371. crossref(new window)

29.
Needleman, A. (1987), "A continuum model for void nucleation by inclusion debonding", J. Appl. Mech., 54, 525-531. crossref(new window)

30.
Needleman, A. (1990), "An analysis of decohesion along an imperfect interface", Int. J. Fract., 42, 21-40. crossref(new window)

31.
Nose, S. (1984), "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, 511-519. crossref(new window)

32.
Paliwal, B. and Cherkaoui, M. (2013), "An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth", Int. J. Solid. Struct., 50, 3346-3360. crossref(new window)

33.
Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19. crossref(new window)

34.
Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J. and Gullett, P.M. (2006), "A molecular dynamics study of void growth and coalescence in single crystal nickel", Int. J. Plast., 22, 257-278. crossref(new window)

35.
Ren, G.W., Tang, T.G. and Li, Q.Z. (2012), "Atomistic study of anisotropic effect on two-dimensional dynamic crack", Front. Mater. Sci., 6(1), 87-96. crossref(new window)

36.
Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power-law hardening material", J. Mech. Phys. Solid., 16, 1-12. crossref(new window)

37.
Rosch, F., Trebin, H.R. and Gumbsch, P. (2006), "Fracture of complex metallic alloys: An atomistic study of model systems", Phil Mag., 86, 1015-1020. crossref(new window)

38.
Le Roy, G., Embury, J.D., Edwards, G. and Ashby, M.F. (1981), "A model of ductile fracture based on the nucleation and growth of voids", Acta Metallurgica, 29, 1509-1522. crossref(new window)

39.
Schiotz, J., DiTolla, F.D. and Jacobsen, K.W. (1998b), "Softening of nanocrystalline metals at very small grain sizes", Nature, 391, 561-563. crossref(new window)

40.
Schiotz, J., Vegge, T., DiTolla, F.D. and Jacobsen, K.W. (1999), "Atomic-scale simulations of the mechanical deformation of nanocrystalline metals", Phys. Rev. B, 60, 11971. crossref(new window)

41.
Sorensen, M.R., Brandbyge, M. and Jacobsen, K.W. (1998a), "Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms", Phys. Rev. B, 57, 3283. crossref(new window)

42.
Swope, W.C., Andersen, H.C., Berens, P.H. and Wilson, K.R. (1982), "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters", J. Chem. Phys., 76, 637-649. crossref(new window)

43.
Tai, W.H. and Yang, B.X. (1986), "A new microvoid-damage model for ductile fracture", Eng. Fract. Mech., 25, 377-384. crossref(new window)

44.
Thomason, P.F. (1998), "A view on ductile-fracture modelling", Fatig. Fract. Eng. Mater. Struct., 21(9), 1105-1122. crossref(new window)

45.
Tomar, V., Zhai, J. and Zhou, M. (2004), "Bounds for element size in a variable stiffness cohesive finite element model", Int. J. Numer. Meth. Eng., 61, 1894-1920. crossref(new window)

46.
Tvergaard, V. (2001), "Crack growth predictions by cohesive zone model for ductile fracture", J. Mech. Phys. Solid., 49, 2191-2207. crossref(new window)

47.
Westergaard, H.M. (1939), "Bearing pressures and cracks", J. Appl. Mech., 6, 49-53.

48.
Williams, M.L. (1957), "On the stress distribution at the base of a stationary crack", Trans. AMSE J. Appl. Mech., 24, 109-114.

49.
Wu, W. and Yao, Z. (2012), "Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel", J. Theo. Appl. Fract. Mech., 62, 67-75. crossref(new window)

50.
Xu, S. and Deng, X. (2008), "Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal", Nanotechnology, 19, 115705. crossref(new window)

51.
Xue, L. and Wierzbicki, T. (2008), "Ductile fracture initiation and propagation modeling using damage plasticity theory", J. Eng. Fract. Mech., 75, 3276-3293. crossref(new window)

52.
Yamakov, V., Saether, E., Phillips, D.R. and Glaessgen, E.H. (2006), "Molecular-dynamics simulationbased cohesive zone representation of intergranular fracture processes in aluminum", J. Mech. Phys. Solid., 54, 1899-1928. crossref(new window)

53.
Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. and Gleiter, H. (2002), "Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation", Nature Mater., 1(1), 45-49. crossref(new window)

54.
Yavari, A.R., Lewandowski, J.J. and Eckert, J. (2007), "Mechanical properties of bulk metallic glasses", Mrs Bull., 32(08), 635-638. crossref(new window)

55.
Zeng, X. and Li, S. (2010), "A multiscale cohesive zone model and simulations of fractures", Comput. Meth. Appl. Mech. Eng., 199, 547-556. crossref(new window)

56.
Zhou, X.W., Moody, N.R., Jones, R.E., Zimmerman, J.A. and Reedy, E.D. (2009), "Molecular-dynamicsbased cohesive zone law for brittle interfacial fracture under mixed loading conditions: effects of elastic constant mismatch", Acta Materialia, 57(16), 4671-4686. crossref(new window)

57.
Zhou, M. (2003), "A new look at the atomic level virial stress: on continuum-molecular system equivalence", Proc. R. Soc. London A, 459, 2347-2392. crossref(new window)

58.
Zhou, X.W., Zimmerman, J.A., Reedy, E.D. and Moody, N.R. (2008), "Molecular dynamics simulation based cohesive surface representation of mixed mode fracture", Mech. Mater., 40, 832-845. crossref(new window)