On the bending and stability of nanowire using various HSDTs

- Journal title : Advances in nano research
- Volume 3, Issue 4, 2015, pp.177-191
- Publisher : Techno-Press
- DOI : 10.12989/anr.2015.3.4.177

Title & Authors

On the bending and stability of nanowire using various HSDTs

Youcef, Djamel Ould; Kaci, Abdelhakim; Houari, Mohammed Sid Ahmed; Tounsi, Abdelouahed; Benzair, Abdelnour; Heireche, Houari;

Youcef, Djamel Ould; Kaci, Abdelhakim; Houari, Mohammed Sid Ahmed; Tounsi, Abdelouahed; Benzair, Abdelnour; Heireche, Houari;

Abstract

In this article, various higher-order shear deformation theories (HSDTs) are developed for bending and buckling behaviors of nanowires including surface stress effects. The most important assumption used in different proposed beam theories is that the deflection consists of bending and shear components and thus the theories have the potential to be utilized for modeling of the surface stress influences on nanowires problems. Numerical results are illustrated to prove the difference between the response of the nanowires predicted by the classical and non-classical solutions which depends on the magnitudes of the surface elastic constants.

Keywords

surface effects;nanowires;bending;buckling;

Language

English

Cited by

1.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory,;;;;;;

2.

Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory,;;;;

3.

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory,;;;;;

4.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory,;;;;

1.

2.

3.

4.

5.

6.

References

1.

Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318.

2.

Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165.

3.

Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630.

4.

Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49, 1244-1255.

5.

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283.

6.

Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081.

7.

Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365.

8.

Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37.

9.

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013) "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104.

10.

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423.

11.

Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082.

12.

Chiu, M.S. and Chen, T. (2011a), "Higher-order surface stress effects on buckling of nanowires under uniaxial compression", Procedia Eng., 10, 397-402.

13.

Chiu, M.S. and Chen, T.Y. (2011b), "Effects of high-order surface stress on static bending behavior of nanowires", Physica E, 44(3), 714-718.

15.

Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effects on the elastic behavior of nanosized particles, wires and films", J. Mech. Phys. Solid., 53(8), 1827-1954.

16.

Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81.

17.

Duan, H.L., Wang, J., Huang, Z.P. and Karihaloo, B.L. (2005), "Size dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress", J. Mech. Phys. Solid., 53, 1574-1596.

18.

Ekinci, K.L. and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76, 061101.

19.

Eltaher, M., Khater, M., Abdel-Rahman, E. and Yavuz, M. (2014), "A model for nano bonding wires under thermal loading", IEEE-Nano 2014, Toronto, Canada.

20.

Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57, 291-323.

21.

Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14, 431-440.

22.

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253.

23.

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383.

24.

Hosseini-Hashemi, Sh., Fakher, M. and Nazemnezhad, R. (2013), "Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko", J. Solid Mech., 5(3), 290-304.

25.

He, J. and Lilley, C.M. (2008a), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8, 1798-1802.

26.

He, J. and Lilley, C.M. (2008b), "Surface effect on the elastic behavior of static bending nanowires", Appl. Phys. Lett., 93, 263108.

27.

He, L.H. and Lim, C.W. (2001), "On the bending of unconstrained thin crystalline plates caused by the change in surface stress", Surf. Sci., 478(3), 203-210.

28.

Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78, 1093-1109.

29.

Jiang, L.Y. and Yan, Z. (2010), "Timoshenko beam model for static bending of nanowires with surface effects", Physica E, 42, 2274-2279.

30.

Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442.

31.

Li, B., Li, C.X. and Wei, C.L. (2011), "Surface effects on the postbuckling of nanowires", Chin. Phys. Lett., 28(4), 046202.

32.

Liu, J.L., Mei, Y., Xia, R. and Zhu, W.L. (2012), "Large displacement of a static bending nanowire with surface effects", Physica E, 44, 2050-2055.

33.

Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647.

34.

Mahmoud F., Eltaher M., Alshorbagy A. and Meletis E. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Tech., 26(11), 3555-3563.

35.

Park, H.S. and Klein, P.A. (2008), "Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress", J. Mech. Phys. Solid., 56, 3144-3166.

36.

Park, H.S. (2008), "Surface stress effects on the resonant properties of silicon nanowires", J. Appl. Phys., 103, 123504.

37.

Park, H.S. (2009), "Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered", Nanotechnol., 20, 115701.

38.

Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752.

39.

Reddy, J.N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons Inc.

40.

Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82, 535-537.

41.

Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous mono- clinic plates", Acta Mech., 94(3), 195-220.

42.

Song, F. and Huang, G.L. (2009), "Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory", Phys. Lett. A, 373, 3969-3973.

43.

Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11.

45.

Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94, 141913.