JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On the bending and stability of nanowire using various HSDTs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Advances in nano research
  • Volume 3, Issue 4,  2015, pp.177-191
  • Publisher : Techno-Press
  • DOI : 10.12989/anr.2015.3.4.177
 Title & Authors
On the bending and stability of nanowire using various HSDTs
Youcef, Djamel Ould; Kaci, Abdelhakim; Houari, Mohammed Sid Ahmed; Tounsi, Abdelouahed; Benzair, Abdelnour; Heireche, Houari;
 Abstract
In this article, various higher-order shear deformation theories (HSDTs) are developed for bending and buckling behaviors of nanowires including surface stress effects. The most important assumption used in different proposed beam theories is that the deflection consists of bending and shear components and thus the theories have the potential to be utilized for modeling of the surface stress influences on nanowires problems. Numerical results are illustrated to prove the difference between the response of the nanowires predicted by the classical and non-classical solutions which depends on the magnitudes of the surface elastic constants.
 Keywords
surface effects;nanowires;bending;buckling;
 Language
English
 Cited by
1.
Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory,;;;;;;

Structural Engineering and Mechanics, 2016. vol.57. 4, pp.617-639 crossref(new window)
2.
Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory,;;;;

Wind and Structures, 2016. vol.22. 4, pp.429-454 crossref(new window)
3.
Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory,;;;;;

Advances in nano research, 2016. vol.4. 1, pp.31-44 crossref(new window)
4.
Thermal stability of functionally graded sandwich plates using a simple shear deformation theory,;;;;

Structural Engineering and Mechanics, 2016. vol.58. 3, pp.397-422 crossref(new window)
5.
On thermal stability of plates with functionally graded coefficient of thermal expansion,;;;;

Structural Engineering and Mechanics, 2016. vol.60. 2, pp.313-335 crossref(new window)
1.
Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory, Advances in nano research, 2016, 4, 1, 31  crossref(new windwow)
2.
Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory, Wind and Structures, 2016, 22, 4, 429  crossref(new windwow)
3.
Thermal stability of functionally graded sandwich plates using a simple shear deformation theory, Structural Engineering and Mechanics, 2016, 58, 3, 397  crossref(new windwow)
4.
On thermal stability of plates with functionally graded coefficient of thermal expansion, Structural Engineering and Mechanics, 2016, 60, 2, 313  crossref(new windwow)
5.
Elastic buckling of current-carrying double-nanowire systems immersed in a magnetic field, Acta Mechanica, 2016, 227, 12, 3549  crossref(new windwow)
6.
Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory, Structural Engineering and Mechanics, 2016, 57, 4, 617  crossref(new windwow)
7.
Surface and shear energy effects on vibrations of magnetically affected beam-like nanostructures carrying direct currents, International Journal of Mechanical Sciences, 2016, 113, 221  crossref(new windwow)
 References
1.
Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. crossref(new window)

2.
Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. crossref(new window)

3.
Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. crossref(new window)

4.
Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49, 1244-1255. crossref(new window)

5.
Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. crossref(new window)

6.
Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. crossref(new window)

7.
Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. crossref(new window)

8.
Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. crossref(new window)

9.
Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013) "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. crossref(new window)

10.
Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. crossref(new window)

11.
Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. crossref(new window)

12.
Chiu, M.S. and Chen, T. (2011a), "Higher-order surface stress effects on buckling of nanowires under uniaxial compression", Procedia Eng., 10, 397-402. crossref(new window)

13.
Chiu, M.S. and Chen, T.Y. (2011b), "Effects of high-order surface stress on static bending behavior of nanowires", Physica E, 44(3), 714-718. crossref(new window)

14.
Craighead, H.G. (2000), "Nanoelectromechanical systems", Sci., 290, 1532-1535. crossref(new window)

15.
Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effects on the elastic behavior of nanosized particles, wires and films", J. Mech. Phys. Solid., 53(8), 1827-1954. crossref(new window)

16.
Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. crossref(new window)

17.
Duan, H.L., Wang, J., Huang, Z.P. and Karihaloo, B.L. (2005), "Size dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress", J. Mech. Phys. Solid., 53, 1574-1596. crossref(new window)

18.
Ekinci, K.L. and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76, 061101. crossref(new window)

19.
Eltaher, M., Khater, M., Abdel-Rahman, E. and Yavuz, M. (2014), "A model for nano bonding wires under thermal loading", IEEE-Nano 2014, Toronto, Canada.

20.
Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57, 291-323. crossref(new window)

21.
Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14, 431-440. crossref(new window)

22.
Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. crossref(new window)

23.
Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. crossref(new window)

24.
Hosseini-Hashemi, Sh., Fakher, M. and Nazemnezhad, R. (2013), "Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko", J. Solid Mech., 5(3), 290-304.

25.
He, J. and Lilley, C.M. (2008a), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8, 1798-1802. crossref(new window)

26.
He, J. and Lilley, C.M. (2008b), "Surface effect on the elastic behavior of static bending nanowires", Appl. Phys. Lett., 93, 263108. crossref(new window)

27.
He, L.H. and Lim, C.W. (2001), "On the bending of unconstrained thin crystalline plates caused by the change in surface stress", Surf. Sci., 478(3), 203-210. crossref(new window)

28.
Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78, 1093-1109. crossref(new window)

29.
Jiang, L.Y. and Yan, Z. (2010), "Timoshenko beam model for static bending of nanowires with surface effects", Physica E, 42, 2274-2279. crossref(new window)

30.
Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. crossref(new window)

31.
Li, B., Li, C.X. and Wei, C.L. (2011), "Surface effects on the postbuckling of nanowires", Chin. Phys. Lett., 28(4), 046202. crossref(new window)

32.
Liu, J.L., Mei, Y., Xia, R. and Zhu, W.L. (2012), "Large displacement of a static bending nanowire with surface effects", Physica E, 44, 2050-2055. crossref(new window)

33.
Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. crossref(new window)

34.
Mahmoud F., Eltaher M., Alshorbagy A. and Meletis E. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Tech., 26(11), 3555-3563. crossref(new window)

35.
Park, H.S. and Klein, P.A. (2008), "Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress", J. Mech. Phys. Solid., 56, 3144-3166. crossref(new window)

36.
Park, H.S. (2008), "Surface stress effects on the resonant properties of silicon nanowires", J. Appl. Phys., 103, 123504. crossref(new window)

37.
Park, H.S. (2009), "Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered", Nanotechnol., 20, 115701. crossref(new window)

38.
Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. crossref(new window)

39.
Reddy, J.N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons Inc.

40.
Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82, 535-537. crossref(new window)

41.
Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous mono- clinic plates", Acta Mech., 94(3), 195-220. crossref(new window)

42.
Song, F. and Huang, G.L. (2009), "Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory", Phys. Lett. A, 373, 3969-3973. crossref(new window)

43.
Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. crossref(new window)

44.
Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. crossref(new window)

45.
Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94, 141913. crossref(new window)

46.
Wang, G.F. and Yang, F. (2011), "Postbuckling analysis of nanowires with surface effects", J. Appl. Phys., 109, 063535. crossref(new window)

47.
Yan, Z. and Jiang, L.Y. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22, 245703-245709. crossref(new window)