JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Advances in nano research
  • Volume 3, Issue 4,  2015, pp.193-206
  • Publisher : Techno-Press
  • DOI : 10.12989/anr.2015.3.4.193
 Title & Authors
Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity
Chemi, Awda; Heireche, Houari; Zidour, Mohamed; Rakrak, Kaddour; Bousahla, Abdelmoumen Anis;
 Abstract
The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.
 Keywords
double-walled carbon nanotubes;chirality;buckling;small-scale;non-local elasticity;
 Language
English
 Cited by
1.
A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams,;;;;

Advances in nano research, 2016. vol.4. 4, pp.251-264 crossref(new window)
2.
Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory,;;;;;;

Structural Engineering and Mechanics, 2016. vol.57. 4, pp.617-639 crossref(new window)
3.
An efficient shear deformation theory for wave propagation of functionally graded material plates,;;;;;

Structural Engineering and Mechanics, 2016. vol.57. 5, pp.837-859 crossref(new window)
4.
Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory,;;;;

Wind and Structures, 2016. vol.22. 4, pp.429-454 crossref(new window)
5.
Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory,;;;;;

Advances in nano research, 2016. vol.4. 1, pp.31-44 crossref(new window)
6.
Thermal stability of functionally graded sandwich plates using a simple shear deformation theory,;;;;

Structural Engineering and Mechanics, 2016. vol.58. 3, pp.397-422 crossref(new window)
7.
Nonlocal vibration analysis of FG nano beams with different boundary conditions,;;;

Advances in nano research, 2016. vol.4. 2, pp.85-111 crossref(new window)
1.
Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory, Structural Engineering and Mechanics, 2016, 57, 4, 617  crossref(new windwow)
2.
Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams, Mechanics of Advanced Materials and Structures, 2017, 24, 11, 924  crossref(new windwow)
3.
Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory, Wind and Structures, 2016, 22, 4, 429  crossref(new windwow)
4.
An efficient shear deformation theory for wave propagation of functionally graded material plates, Structural Engineering and Mechanics, 2016, 57, 5, 837  crossref(new windwow)
5.
Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory, Advances in nano research, 2016, 4, 1, 31  crossref(new windwow)
6.
Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory, Microsystem Technologies, 2017, 23, 7, 2393  crossref(new windwow)
7.
Thermal stability of functionally graded sandwich plates using a simple shear deformation theory, Structural Engineering and Mechanics, 2016, 58, 3, 397  crossref(new windwow)
8.
Nonlocal vibration analysis of FG nano beams with different boundary conditions, Advances in nano research, 2016, 4, 2, 85  crossref(new windwow)
9.
A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams, Advances in nano research, 2016, 4, 4, 251  crossref(new windwow)
 References
1.
Aissani, K., Bachir Bouiadjra, M., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-762. crossref(new window)

2.
Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. crossref(new window)

3.
Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. crossref(new window)

4.
Amara, K., Tounsi, A., Mechab, I. and Adda Bedia, E. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34, 3933-3942. crossref(new window)

5.
Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210. crossref(new window)

6.
Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2015), "Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory", Full. Nanotub. Carb. Nanostr., 23, 266-272. crossref(new window)

7.
Bao, W.X., Zhu, Ch.Ch. and Cui, W.Zh. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B, 352, 156-163. crossref(new window)

8.
Batra, R.C. and Sears, A. (2007), "Continuum models of multi-walled carbon nanotubes", Int. J. Solid. Stuct., 44, 7577. crossref(new window)

9.
Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. crossref(new window)

10.
Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. crossref(new window)

11.
Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. crossref(new window)

12.
Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D., 41, 225404. crossref(new window)

13.
Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda Bedia El A. (2015), "Postbuckling analysis of nanobeams using trigonometric Shear deformation theory", Appl. Sci. Report., 10(2), 112-121.

14.
Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. crossref(new window)

15.
Boumia, L., Zidour, M., Benzair, A. and Tounsi, A. (2014), "Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes", Physica E, 59, 186-191. crossref(new window)

16.
Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. crossref(new window)

17.
Brenner, D.W. (1990), Phys. Rev. B, 42, 9458. crossref(new window)

18.
Cornwell, C.F. and Wille, L.T. (1997), "Elastic properties of single-walled carbon nanotubes in compression", Solid. State. Commun., 101, 555. crossref(new window)

19.
Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384, 147-50. crossref(new window)

20.
Dresselhaus, M.S. and Avouris, P. (2001), "Carbon nanotubes: synthesis, structure, properties and application", Top. Appl. Phys., 80, 1-11. crossref(new window)

21.
Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. crossref(new window)

22.
Girifalco, L.A. and Lad, R.A., Chem, (1956), "Energy of cohesion, compressibility, and the potential energy functions of the graphite system", J. Phys., 25, 693.

23.
Girifalco, L.A. (1991), "Interaction potential for carbon (C60) molecules", J. Phys., 95, 5370.

24.
Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. crossref(new window)

25.
Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. crossref(new window)

26.
Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008) "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40, 2791-2799. crossref(new window)

27.
Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-8. crossref(new window)

28.
Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1 nm diameter", Nature, 363, 603. crossref(new window)

29.
Jin, Y. and Yuan, F. G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol, 63, 1507. crossref(new window)

30.
Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. crossref(new window)

31.
Liu, J.Z., Zheng, Q. S. and Jiang, Q. (2001), "Effect of a rippling mode on resonances of carbon nanotubes", Phys. Rev. Lett, 86, 4843. crossref(new window)

32.
Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. crossref(new window)

33.
Mohammadimehr, M., Saidi, A. R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2011), "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proc. IMech E Vol. 225 Part C: J. Mechanical Engineering Science.

34.
Murmu, T. and Adhikari, S. (2010), "Thermal effects on the stability of embedded carbon nanotubes", Physica E, 43, 415-422. crossref(new window)

35.
Naceri, M., Zidour, M., Semmah, A., Houari, S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl. Phys., 110, 124322. crossref(new window)

36.
Odegard, G.M., Gates, Nicholson, T.S.L.M., and Wise, K.E. (2002), "Equivalent-continuum modeling of nano-structured materials", Compos. Sci. Technol, 62, 1869-1880. crossref(new window)

37.
Reulet, B. et al. (2000), "Acoustoelectric effects in carbon nanotubes", Phys. Rev. Lett., 85, 2829. crossref(new window)

38.
Sears, C. and Batra, A.R.C. (2006), "Buckling of carbon nanotubes under axial compression", Phys. Rev. B., 73, 085410. crossref(new window)

39.
Semmah, A., Tounsi, A., Zidour, M., Heireche H. and Naceri M. (2014), "Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory", Full. Nanotub. Carb. Nanostr., 23, 518-522.

40.
Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281. crossref(new window)

41.
Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. crossref(new window)

42.
Tokio, Y. (1995), "Recent development of carbon nanotube", Synth. Met., 70, 1511-8. crossref(new window)

43.
Tombler, T.W., Zhou, C.W., Alexseyev, L. et al. (2000), "Reversible nanotube electro-mechanical characteristics under local probe manipulation", Nature, 405, 769. crossref(new window)

44.
Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. crossref(new window)

45.
Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. crossref(new window)

46.
Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's modulus dependent on layer number", Phys. Rev. B, 65, 233407. crossref(new window)

47.
Yakobson, B.I., Brabec, C.J. and J. Bernholc, (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. crossref(new window)

48.
Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. crossref(new window)

49.
Zhang, H.W., Wang, L. and Wang, J. B. (2007), "Computer simulation of buckling behaviour of doublewalled carbon nanotubes with abnormal interlayer distances", Comput. Mater. Sci., 39, 664. crossref(new window)

50.
Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. crossref(new window)

51.
Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, El A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. crossref(new window)

52.
Zidour, M., Hadji, L., Bouazza, M., Tounsi, A. and Adda Bedia, El A. (2015), "The mechanical properties of Zigzag carbon nanotube using the energy-equivalent model", J. Chem. Mater. Res., 3, 9-14.