Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

- Journal title : Advances in nano research
- Volume 3, Issue 4, 2015, pp.193-206
- Publisher : Techno-Press
- DOI : 10.12989/anr.2015.3.4.193

Title & Authors

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

Chemi, Awda; Heireche, Houari; Zidour, Mohamed; Rakrak, Kaddour; Bousahla, Abdelmoumen Anis;

Chemi, Awda; Heireche, Houari; Zidour, Mohamed; Rakrak, Kaddour; Bousahla, Abdelmoumen Anis;

Abstract

The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.

Keywords

double-walled carbon nanotubes;chirality;buckling;small-scale;non-local elasticity;

Language

English

Cited by

1.

A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams,;;;;

2.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory,;;;;;;

3.

An efficient shear deformation theory for wave propagation of functionally graded material plates,;;;;;

4.

Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory,;;;;

5.

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory,;;;;;

6.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory,;;;;

1.

2.

3.

4.

5.

6.

7.

8.

References

1.

Aissani, K., Bachir Bouiadjra, M., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-762.

2.

Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318.

3.

Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165.

4.

Amara, K., Tounsi, A., Mechab, I. and Adda Bedia, E. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34, 3933-3942.

5.

Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210.

6.

Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2015), "Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory", Full. Nanotub. Carb. Nanostr., 23, 266-272.

7.

Bao, W.X., Zhu, Ch.Ch. and Cui, W.Zh. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B, 352, 156-163.

8.

Batra, R.C. and Sears, A. (2007), "Continuum models of multi-walled carbon nanotubes", Int. J. Solid. Stuct., 44, 7577.

9.

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283.

10.

Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081.

11.

Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37.

12.

Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D., 41, 225404.

13.

Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda Bedia El A. (2015), "Postbuckling analysis of nanobeams using trigonometric Shear deformation theory", Appl. Sci. Report., 10(2), 112-121.

14.

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104.

15.

Boumia, L., Zidour, M., Benzair, A. and Tounsi, A. (2014), "Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes", Physica E, 59, 186-191.

16.

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423.

18.

Cornwell, C.F. and Wille, L.T. (1997), "Elastic properties of single-walled carbon nanotubes in compression", Solid. State. Commun., 101, 555.

19.

Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384, 147-50.

20.

Dresselhaus, M.S. and Avouris, P. (2001), "Carbon nanotubes: synthesis, structure, properties and application", Top. Appl. Phys., 80, 1-11.

21.

Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710.

22.

Girifalco, L.A. and Lad, R.A., Chem, (1956), "Energy of cohesion, compressibility, and the potential energy functions of the graphite system", J. Phys., 25, 693.

23.

Girifalco, L.A. (1991), "Interaction potential for carbon (C60) molecules", J. Phys., 95, 5370.

24.

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253.

25.

Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383.

26.

Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008) "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40, 2791-2799.

28.

Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1 nm diameter", Nature, 363, 603.

29.

Jin, Y. and Yuan, F. G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol, 63, 1507.

30.

Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442.

31.

Liu, J.Z., Zheng, Q. S. and Jiang, Q. (2001), "Effect of a rippling mode on resonances of carbon nanotubes", Phys. Rev. Lett, 86, 4843.

32.

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508.

33.

Mohammadimehr, M., Saidi, A. R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2011), "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proc. IMech E Vol. 225 Part C: J. Mechanical Engineering Science.

34.

Murmu, T. and Adhikari, S. (2010), "Thermal effects on the stability of embedded carbon nanotubes", Physica E, 43, 415-422.

35.

Naceri, M., Zidour, M., Semmah, A., Houari, S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl. Phys., 110, 124322.

36.

Odegard, G.M., Gates, Nicholson, T.S.L.M., and Wise, K.E. (2002), "Equivalent-continuum modeling of nano-structured materials", Compos. Sci. Technol, 62, 1869-1880.

37.

Reulet, B. et al. (2000), "Acoustoelectric effects in carbon nanotubes", Phys. Rev. Lett., 85, 2829.

38.

Sears, C. and Batra, A.R.C. (2006), "Buckling of carbon nanotubes under axial compression", Phys. Rev. B., 73, 085410.

39.

Semmah, A., Tounsi, A., Zidour, M., Heireche H. and Naceri M. (2014), "Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory", Full. Nanotub. Carb. Nanostr., 23, 518-522.

40.

Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281.

41.

Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277.

43.

Tombler, T.W., Zhou, C.W., Alexseyev, L. et al. (2000), "Reversible nanotube electro-mechanical characteristics under local probe manipulation", Nature, 405, 769.

44.

Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11.

45.

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220.

46.

Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's modulus dependent on layer number", Phys. Rev. B, 65, 233407.

47.

Yakobson, B.I., Brabec, C.J. and J. Bernholc, (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514.

48.

Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710.

49.

Zhang, H.W., Wang, L. and Wang, J. B. (2007), "Computer simulation of buckling behaviour of doublewalled carbon nanotubes with abnormal interlayer distances", Comput. Mater. Sci., 39, 664.

50.

Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34.

51.

Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, El A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104.

52.

Zidour, M., Hadji, L., Bouazza, M., Tounsi, A. and Adda Bedia, El A. (2015), "The mechanical properties of Zigzag carbon nanotube using the energy-equivalent model", J. Chem. Mater. Res., 3, 9-14.