JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The use of nanotechnology in the agriculture
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Advances in nano research
  • Volume 3, Issue 4,  2015, pp.207-223
  • Publisher : Techno-Press
  • DOI : 10.12989/anr.2015.3.4.207
 Title & Authors
The use of nanotechnology in the agriculture
Cicek, Semra; Nadaroglu, Hayrunnisa;
 Abstract
Nanotechnology is considered the most important technological advancement in recent years, and it is utilized in all industries due to its potential applications. Almost all of the industries (food, agriculture, medicine, automotive, information and communication technologies, energy, textile, construction, etc.) reorganize their future in the light of nanotechnological developments. As the most important source of income of countries, the agriculture industry increases the use of nanotechnology products gradually as a solution to the problems encountered. Reducing the use of agricultural inputs (pesticides, herbicides, fertilizers, etc.) by increasing their efficiency utilizing nano-carriers, detecting the environmental conditions and development of the crops in the field simultaneously by making use of nanosensors, reducing the sample volume and the amount of analyte used thanks to nanoarrays, effective treatment of water resources through nano-filters, accelerating the development of crops by using nanoparticles are the prominent nanotechnological applications in the agriculture industry. This review presents information on the benefits of the recent developments in nanotechnology applications in the agriculture industry.
 Keywords
agriculture;nanobiotechnology;nono-fertilizers;nano-pesticides;nanobiosensors;
 Language
English
 Cited by
1.
Green synthesis of Ce2O3 NPs and determination of its antioxidant activity , IET Nanobiotechnology, 2017, 11, 4, 411  crossref(new windwow)
2.
Natural Poly- and Oligosaccharides as Novel Delivery Systems for Plant Protection Compounds, Journal of Agricultural and Food Chemistry, 2017, 65, 31, 6582  crossref(new windwow)
3.
Chitosan nanoparticles preparation and applications, Environmental Chemistry Letters, 2017  crossref(new windwow)
 References
1.
Aharoni, A. and Vorst O. (2002), "DNA microarrays for functional plant genomics", Plant. Mol. Biol., 48, 99-118. crossref(new window)

2.
Ahmed, R.A. and Fekry, A.M. (2013), "Preparation and Characterization of a Nanoparticles Modified Chitosan Sensor and Its Application for the Determination of Heavy Metals from Different Aqueous Media", Int. J. Electrochem. Sci., 8, 6692-6708.

3.
Ali, M.A., Rehman, I., Iqbal, A., Din, S., Rao, A.Q., Latif, A., Samiullah, T.R., Azam, S. and Husnain, T. (2014), "Nanotechnology, a new frontier in agriculture", Adv. Life Sci., 1(3), 129-138.

4.
Allen, R. (1994), "Agriculture during the industrial revolution, 1700-1850", Econom. History Britain Since 1700, 3, 96-123.

5.
Argonide Nanoceram filters Argonide Corp. (2005), http://sbir.nasa.gov/SBIR/successes/ss/9-072text.html

6.
Arifin, D.Y., Lee, L.Y. and Wang, C.H. (2006), "Mathematical modelling and simulation of drug release from microspheres: implications to drug delivery systems", Adv. Drug. Deliv. Rev., 58, 1274-1325. crossref(new window)

7.
Bhati-Kushwaha, H., Kaur, A. and Malik, C.P. (2013), "The synthesis and role of biogenic nanoparticles in overcoming chilling stress", Indian J. Plant Sci., 2, 54-62.

8.
Bradley, E.L., Castle, L. and Chaudhry, Q. (2011), "Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries", Trend. Food Sci. Technol., 22, 604-610. crossref(new window)

9.
Brock, D.A., Douglas, T.E., Queller, D.C. and Strassmann, J.E. (2011), "Primitive agriculture in a social amoeba", Nature, 469(7330), 393-396. crossref(new window)

10.
Bruchez, M.J., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P. (1998), "Semiconductor nanocrystals as fluorescent biological labels", Sci., 281, 2013-2016. crossref(new window)

11.
Cao, Y., Lee Koo, Y.E. and Kopelman, R. (2004), "Poly(decyl methacrylate)-Based Fluorescent PEBBLE Swarm Nano- sensors for Measuring Dissolved Oxygen in Biosamples", Analyst, 129(7), 45-50. crossref(new window)

12.
Chinnamuthu, C.R. and Boopathi, P.M. (2009), "Nanotechnology and agroecosystem", Madras. Agric. J., 96(1-6), 17-31.

13.
Corradini, E., De Moura, M.R. and Mattoso, L.H.C. (2010), "A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles", Express Polym. Lett., 4(8), 509-515. crossref(new window)

14.
Cui, H., Sun, C., Liu, Q., Jiang, J. and Gu, W. (2010), "Applications of nanotechnology in agrochemical formulation:perspectives, challenges and strategies", Nanoagri., Sao Pedro, Brazil.

15.
Cui, Y., Wei, Q., Park, H. and Lieber, C.M. (2001), "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species", Science, 293(12) 89-92. crossref(new window)

16.
Dehkordi, E.H. and Mousavi, M. (2013), "Effect of anatase nanoparticles ($TiO_2$) on parsley seed germination (petroselinum crispum) in Vitro", Biol. Trace Elem. Res., 155, 283-286. crossref(new window)

17.
DeRosa, M.C., Monreal, C., Schnitzer, M., Walsh, R. and Sultan, Y. (2010), "Nanotechnology in Fertilizers", Nat. Nanotechnol., 5, 91-94. crossref(new window)

18.
Ditta, A. (2012), "How helpful is nanotechnology in agriculture", Adv. Nat. Sci.: Nanosci. Nanotechnol., 3(3), 033002. crossref(new window)

19.
Ditta, A. and Arshad, M. (2015), "Applications and perspectives of using nanomaterials for sustainable plant nutrition", Nanotechnology Reviews.

20.
Ditta, A., Arshad, M. and Ibrahim, M. (2015), "Nanoparticles in Sustainable Agricultural Crop Production: Applications and Perspectives", Nanotechnology and Plant Sciences-Nanoparticles and Their Impact on Plants, Eds. M.H. Siddiqui, M.H. Al-Whaibi, F. Mohammad, Springer, Switzerland.

21.
Du, M., Guo, B. and Jia, D. (2010), "Newly emerging applications of halloysite nanotubes: a review", Polym. Int., 59(5), 574-82.

22.
Dudo, A., Choi, D. and Scheufele, D.A. (2011), "Food nanotechnology in the news. Coverage patterns and thematic emphases during the last decade", Appetite, 56, 78-89. crossref(new window)

23.
Duran, N. and Marcato, P.D. (2013), "Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review", Int. J. Food Sci. Techno.l, 48(6), 1127-1134. crossref(new window)

24.
Ehsani, R., Khot, L.R., Sankaran, S., Maja, J.M. and Schuster, E.W. (2012), "Applications of nanomaterials in agricultural production and crop protection: A review", Crop. Protect., 35, 64-70. crossref(new window)

25.
ElAmin, A. (2006b), "Nanocantilevers studied for quick pathogen detection", http://www.foodproductiondaily-usa.com/news/ng.asp?id

26.
ETC Group (2004), "The impact of nano-scale technologies on food and agriculture", Down On The Farm, Reymond Page.

27.
Fakruddin, M., Hossain, Z. and Afroz, H. (2012), "Prospects and applications of nanobiotechnology: a medical perspective", J. Nanobiotechnol., 10, 31-35. crossref(new window)

28.
Farahi, R.H., Passian, A., Tetard, L. and Thundat, T. (2012), "Critical issues in sensor science to aid food and water safety", ACS Nano, 6, 4548-4556. crossref(new window)

29.
Feizi, H., Amirmoradi, S., Abdollahi, F. and Pour, S.J. (2013), "Assessment of Concentrations of Nano and Bulk Iron Oxide Particles on Early Growth of Wheat (Triticum aestivum L.)", Annu. Rev. Res. Biol., 3(4), 814-824.

30.
Fraceto, L.F., De Oliveira, J.L., Campos, E.V.R., Bakshi, M. and Abhilash, P.C. (2014), "Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises", Biotechnol. Adv., 32, 1550-1561. crossref(new window)

31.
Ghorbanpour, M. (2015), "Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide", Indian J. Plant Physiol., 20(3), 249-256. crossref(new window)

32.
Gilman, G.P. (2006), "A simple device for arsenic removal from drinking water using hydrotalcite", Sci. Total Environ., 366, 926-931. crossref(new window)

33.
Gogos, A., Knauer, K. and Bucheli, T.D. (2012), "Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities", J. Agric. Food Chem., 60(39), 9781-9792. crossref(new window)

34.
Goswami, A., Roy, I., Sengupta, S. and Debnath, N. (2010), "Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens", Thin. Solid. Film., 519, 1252-1257. crossref(new window)

35.
Grilloa, R., Pereira, A.E.S., Nishisaka, C.S., de Lima, R., Oehlke, K., Greiner, R. and Fraceto L.F. (2014), "Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control", J. Hazard. Mater., 278, 163-171. crossref(new window)

36.
Gruere, G., Narrod, C. and Abbott, L. (2014), "Agriculture, food, and water nanotechnologies for the Poor: Opportunities and Constraints", Policy Brief 19, International Food Policy Research Institute, Washington, DC, http://www.ifpri.org/sites/default/files/publications/bp019.pdf.)

37.
Guan, H., Chi, D., Yu, J. and Li, X. (2008), "A novel photodegradable insecticide: Preparation, characterization and properties evaluation of nano-Imidacloprid", Pestic. Biochem. Physiol., 92, 83-91. crossref(new window)

38.
Haes A.J. and Duyne, R.P. (2004), "Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics", Exp. Rev. Molecul. Diagnost., 4(4), 527-537. crossref(new window)

39.
Han, H., Wang, X., Liu, X., Gu, X., Chen, K. and Lu, D. (2012), "Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants", J. Nanopart. Res., 14, 841-851. crossref(new window)

40.
Hernandez-Viezcas, J.A., Castillo-Michel, H., Servin, A.D., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2011), "Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles", Chem. Eng. J., 170, 346-352. crossref(new window)

41.
Hillie, T. and Hlophe, M. (2007), "Nanotechnology and the challenge of clean water", Nat. Nanotechnol., 2, 663-664. crossref(new window)

42.
Hirsch, L.R., Jackson, J.B., Lee, A., Halas, N.J. and West, J.L. (2003), "A whole blood immunoassay using Gold Nano- shells", Anal. Chem., 75(23), 77-81.

43.
Hu, J., Salah, S.M., Guan, Y.J., Cao, D.D., Li, J., Aamir, N., Hu, Q.J., Hu, W.M. and Ning, M.Y. (2015), "Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress", Nat. Scie. Report., 5, 14278-14292. crossref(new window)

44.
Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y. and Yang, X. (2007), "Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf", Nanotechnol., 18(105), 104-114.

45.
Ingale, A.G. and Chaudhari, A. (2013), "Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach", J. Nanomed. Nanotechnol., 4(2), 160.

46.
Jain, K.K. (2005), "Nanotechnology in clinical laboratory diagnostics", Clinica Chimica Acta, 358 (1-2), 37-54. crossref(new window)

47.
Jerobin, J., Sureshkumar, R.S., Anjali, C.H., Mukherjee, A. and Chandrasekaran, N. (2012), "Biodegradable polymer based encapsulation of neem oil nano-emulsion for controlled release of Aza-A", Carbohydr. Polym., 90(4), 1750-1756. crossref(new window)

48.
Jo, Y.K., Kim, B.H. and Jung, G. (2009), "Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi", Plant Dis., 93, 1037-1043. crossref(new window)

49.
Johnston, C.T. (2010), "Probing the nanoscale architecture of clay minerals", Clay Miner., 45(3), 245-279. crossref(new window)

50.
Juhel, G., Batisse, E., Hugues, Q., Daly, D., van Pelt, F.N.A.M., Halloran, J.O. and Jansen, M.A.K. (2011), "Alumina nanoparticles enhance growth of Lemna minor", Aquat. Toxicol., 105, 328-336. crossref(new window)

51.
Karn, B., Kuiken, T. and Otto, M. (2009), "Nanotechnology and in situ remediation: A review of benefits and potential risks", Environ. Hlth. Perspect., 117(12), 1823-1831. crossref(new window)

52.
Kashyap, P.L., Xiang, X. and Heiden, P. (2015), "Chitosan nanoparticle based delivery systems for sustainable agriculture", Int. J. Biolog. Macromol., 77, 36-51. crossref(new window)

53.
Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z.R., Watanabe, F. and Biris, A.S. (2009), "Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth", ACS Nano, 3(10), 3221-3227. crossref(new window)

54.
Kottegoda, N., Munaweera, I., Madusanka, N. and Karunaratne, V. (2011), "A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood", Curr. Sci., 101(1), 73-78.

55.
Kumar, A., Khan, S. and Dhawan, A. (2014). "Comprehensive molecular analysis of the responses induced by titanium dioxide nanoparticles in human keratinocyte cells", J. Trans. Toxic., 1, 28-39.

56.
Kumaravel, A. and Chandrasekaran, M. (2011), "Electrochemical determination of imidacloprid using nanosilver Nafion(R)/nanoTiO2 Nafion(R) composite modified glassy carbon electrode", Sens. Actuat. B Chem., 158, 319-326. crossref(new window)

57.
Kumari, A. and Yadav, S.K. (2014), "Nanotechnology in agri-food sector", Crit. Rev. Food Sci. Nutr., 54(8), 975-984. crossref(new window)

58.
Late, D.J., Chakravarty, D. and Erande, M.B. (2015), "Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants", J. Sci. Food Agric., 95(13), 2772-2778. crossref(new window)

59.
Lee, J., Ahmed, S.R., Koh, K. and Park, E.Y. (2013), "Toxic chemical monitoring of agricultural bioproducts using nanomaterials-based sensors", Korean J. Chem. Eng., 30(10), 1825-1832. crossref(new window)

60.
Liu, B., Li, X.Y., Li, B.L., Xu, B.Q. and Zhao, Y.L. (2009a), "Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation", Nano Lett., 9(4), 1386-1394. crossref(new window)

61.
Liu, F., Wen, L.X., Li, Z.Z., Yu, W. and Sun, H.Y. (2006), "Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide", Mater. Res. Bull., 41(12), 2268-2275. crossref(new window)

62.
Liu, Q.L., Chen, B., Wang, Q.L., Fang, X.H. and Lin, J.X. (2009b), "Carbon nanotubes as molecular transporters for walled plant cells", Nano Lett., 9(3), 1007-1010. crossref(new window)

63.
Liu, Q.L., Zhao, Y.Y., Wan, Y.L., Zheng, J.P., Zhang, X.J., Wang, C.R., Fang, X.H. and Lin, J.X. (2010) "Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level", ACS Nano, 4(10), 5743-5748. crossref(new window)

64.
Liu, S., Yuan, L., Yue, X., Zheng, Z. and Tang, Z. (2008), "Recent advances in nanosensors for organophosphate pesticide detection", Adv. Powder Techn., 19, 419-441. crossref(new window)

65.
Liu, X.M., Feng, Z.B., Zhang, F.D., Zhang, S.Q. and He, X.S. (2006), "Preparation and testing of cementing and coating nano-sub nano composites of slow/controlled release fertilizer", Agric. Sci. China, 5(9), 700-706. crossref(new window)

66.
Liu, X.M., Zhang, F.D., Zhang, S.Q., He, S.X., Fang, R., Feng, Z. and Wang, Y. (2005), "Responses of peanut to nano-calcium carbonate", Plant Nutr. Fertilizer Sci., 11, 3-9.

67.
Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R. and Tao, M.X. (2002), "Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism", Soybean Sci., 21(3), 168-171.

68.
Manzer, H.S. and Mohamed, H.A.W. (2014), "Role of nano-$SiO_2$ in germination of tomato (Lycopersicum esculentum seeds Mill)", Saudi J. Bio. Sci., 21, 13-17. crossref(new window)

69.
Medintz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi, H. (2005) "Quantum dot bioconjugates for imaging, labelling and sensing", Nature Biotechnol., 4, 435-446.

70.
Muller, F., Houben, A., Barker, P., Xiao, Y., Kas, J. and Melzer, M. (2006), "Quantum dots a versatile tool in plant science", J. Nanobiotechnol., 4, 5. crossref(new window)

71.
Naderi, M.R. and Danesh-Shahraki, A. (2013), "Nanofertilizers and their roles in sustainable agriculture", Intl. J. Agri. Crop Sci., 5(19), 2229-2232.

72.
Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. (2010), "Nanoparticulate material delivery to plants", Plant Sci., 179(3), 154-163. crossref(new window)

73.
Navrotsky, A. (2000), "Nanomaterials in the environment, agriculture, and technology (NEAT)", J. Nanopart Res., 2, 321-323. crossref(new window)

74.
Nejatzadeh-Barandozi, F., Darvishzadeh, F. and Aminkhani, A. (2014), "Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)", Organic Med. Chem. Lett., 4(1), 1-6. crossref(new window)

75.
Nguyen, H.M., Hwang, I.C., Park, J.W. and Park, H.J. (2012), "Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid", J. Microencapsul., 29(6), 596-604. crossref(new window)

76.
Noh, H., Hung, A., Choi, C., Lee, J., Kim, J., Jin, S. and Cha, J. (2008), "50 nm DNA nanoarrays generated from uniform oligonucleotide films", ACS Nano, 3, 2376-2382.

77.
Paula, H.C.B., Sombra, F.M., Cavalcante, R.F., Abreu, F.O.M.S. and de Paula, R.C.M. (2011), "Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil", Mater. Sci. Eng. C, 31, 173-178. crossref(new window)

78.
Perez, J.M., Simeone, F.J., Saeki, Y., Josephson, L. and Weissleder, R. (2003), "Viral-Induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media", J. Am. Chem. Soc., 125(34), 10192-10193. crossref(new window)

79.
Perez-de-Luque, A. and Rubiales, D. (2009), "Nanotechnology for parasitic plant control", Pest. Manag. Sci., 65(5), 540-545. crossref(new window)

80.
Perlatti, B., Bergo Souza, de P.L., Fernandes da, Silva M.F., das, G., Batista, J. and Rossi, M. (2014). Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals, Ed. Trdan, S., Insectic-Dev Safer More Eff Technol , InTech.

81.
Peshin, R., Bandral, R.S., Zhang, W.J., Wilson, L. and Dhawan, A.K. (2009), "Integrated pest management: a global overview of history, programs and adoption", Eds. Peshin, P. and Dhawan, A.K., Integrated Pest Management: innovation-development process, Springer, Dordrecht, Netherlands.

82.
Prasad, R., Bagde, U. and Varma, A. (2012), "An overview of intellectual property rights in relation to agricultural biotechnology", Afr. J. Biotechn., 11(73), 13746-13752.

83.
Prasad, R., Kumar, V. and Prasad, K.S. (2014), "Nanotechnology in sustainable agriculture: Present concerns and future aspects", Afr. J. Biotechn., 13(6), 705-713. crossref(new window)

84.
Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T.S., Sajanlal, P.R. and Pradeep, T. (2012), "Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut", J. Plant Nutr., 35(6), 905-927. crossref(new window)

85.
Qamar, Z., Nasir, I.A. and Husnain, T. (2014), "In-vitro development of Cauliflower synthetic seeds and conversion to plantlets", Adv Life Sci., 1(2), 34-41.

86.
Qureshi, A., Kang, W.P., Davidson, J.L. and Gurbuz, Y. (2009), "Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications", Diam. Relat. Mater., 18, 1401-1420. crossref(new window)

87.
Rai, M. and Ingle, A. (2012), "Role of nanotechnology in agriculture with special reference to management of insect pests", Appl. Microbiol. Biotechnol., 94, 287-293. crossref(new window)

88.
Rai, V., Acharya, S. and Dey, N. (2012), "Implications of nanobiosensors in agriculture", J. Biomater. Nanobiotechnol., 3, 315-324. crossref(new window)

89.
Ramalingam, C., Dasgupta, N., Ranjan, S., Mundekkad, D., Shanker, R. and Kumar, A. (2015), "Nanotechnology in agro-food: From field to plate", Food Res. Int., 69, 381-400. crossref(new window)

90.
Samadi, N., Yahyaabadi, S. and Rezayatmand, Z. (2014), "Effect of $TiO_2$ and $TiO_2$ nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha Piperita", Inter. J. Plant Soil Sci., 3(4), 408-418. crossref(new window)

91.
Schaefer, K. (2008), Clay Nanotubes for Skin, Cosmetics & Toiletries, http://www.cosmeticsandtoiletries.com/research/techtransfer/16119562.html.

92.
Schena, M., Heller, R. and Theriault, T. (1998), "Microarrays: biotechnology's discovery platform for functional genomics", Trend. Biotechn., 16, 301-306. crossref(new window)

93.
Scott, N. and Chen, H. (2012), "Nanoscale science and engineering for agriculture and food systems", Ind. Biotechnol., 8(6), 340-343. crossref(new window)

94.
Scrinis, G. and Lyons, K. (2007), "The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems", Int. J. Soc. Agric. Food, 15(2), 22-24.

95.
Sedghi, M., Sheykhbaglou, R., Shishevan, M.T. and Sharifi, R.S. (2010), "Effects of nano-iron oxide particles on agronomic traits of soybean", Not. Sci. Biol., 2, 112-113. crossref(new window)

96.
Sharon, M., Choudhary, A.K. and Kuma, R. (2010), "Nanotechnology in agricultural diseases and food safety", J. Phytology., 2(4), 83-92.

97.
Somers, R.C., Bawendi, M.G. and Nocera, D.G. (2007), "CdSe nanocrystal based chem/bio sensors", Chem. Soc. Rev., 36, 579-591. crossref(new window)

98.
Sonkaria, S., Ahn, S.H. and Khare, V. (2012), "Nanotechnology and its impact on food and nutrition: a review", Recent Pat. Food Nutr. Agric., 4(1), 8-18.

99.
Soto Garcia, P., Moreau, A.L.D., Magalhaes Ierich, J.C., Araujo Vig, A.C., Higa, A.M., Oliveira, G.S., Camargo Abdalla, F., Hausen, M. and Leite, F.L. (2015), "A nanobiosensor based on 4-hydroxyphenylpyruvate dioxygenase enzyme for mesotrione detection", Sens. J., IEEE, 15(4), 2106 - 2113 crossref(new window)