JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Advances in nano research
  • Volume 3, Issue 4,  2015, pp.243-255
  • Publisher : Techno-Press
  • DOI : 10.12989/anr.2015.3.4.243
 Title & Authors
Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae
Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Rajendran, Venkatachalam; Kannan, Narayanasamy;
 Abstract
In this investigation, ecotoxicity of nano and micro metal oxides, namely silica () and alumina (), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that nano and micro particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, microparticles are less toxic to P. aerugineum Geitler, whereas nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.
 Keywords
nano metal oxides;Porphyridium aerugineum Geitler;chlorophyll content;zeta potential;contact angle;protein content;
 Language
English
 Cited by
 References
1.
Aruoja, V., Dubourguier, H.C. and Kasemets, K. (2008), "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata", Sci. Total Environ., 407, 1461-1468.

2.
Beganskiene, A., Sirutkaitis, V., Kurtinaitiene, M., Juskenas, R. and Kareiva, A. (2004), "FTIR, TEM and NMR investigations of stober silica nanoparticles", Mater. Sci. Medziagotyra, 10, 287-290.

3.
Chandradass, J. and Balasubramanian, M. (2006), "Sol gel processing of alumina fibres", J. Mater. Proc. Technol., 173, 275-280. crossref(new window)

4.
Chen, K.L. and Elimelech, M. (2007), "Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions", J. Colloid Interface Sci., 309, 126-134. crossref(new window)

5.
Cheng, S.H., Lee, C.H., Chen, M.C., Souris, J.S., Tseng, F.G., Yang, C.S., Mou, C.Y., Chen, C.T. and Lo, L.W. (2010), "Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy", J. Mater. Chem., 20, 6149-6157. crossref(new window)

6.
Fargasova, A. (2001), "Interactive effect of manganese, molybdenum, nickel, copper I and II and vanadium on the freshwater alga Scenedesmus quadricauda", Bull. Environ. Contam. Toxicol., 67, 688-695.

7.
Filella, M. and Buffle, J. (1993), "Factors controlling the stability of submicron colloids in natural waters", Colloids Surf A: Physicochem. Eng. Aspects, 73, 255-273. crossref(new window)

8.
Handy, R.D., Kammer, F.V., Lead, J.R., Hassellov, M., Owen, R. and Crane, M. (2008a), "The ecotoxicology and chemistry of the manufactured nanoparticles", Ecotoxicology, 17, 287-314, crossref(new window)

9.
Handy, R.D., Owen, R. and Valsami-Jones, E. (2008b), "The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs", Ecotoxicology, 17, 315-325. crossref(new window)

10.
Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C. and Kahru, A. (2008), "Toxicity of nanosized and bulk ZnO, CuO and $TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus", Chemosphere, 71, 1308-1316. crossref(new window)

11.
Hoeckel, V., DeSchamphelaere, K., Vander Meeren, K.A.C., Lucas, P. and Janssen, S.C.R. (2008), "The ecotoxicity of silica nanoparticles to the alga Pseudokirchneriella subcapitata: importance of surface area", Environ. Toxicol. Chem., 27, 127-136.

12.
Hu, C.W., Li, M., Cui, Y.B., Lia, D.S., Chen, J. and Yang, L.Y. (2010), "Toxicological effects of $TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida", Soil Biol. Biochem., 42, 586-591. crossref(new window)

13.
Huang, C.P., Cha, D.K. and Ismat, S.S. (2005), "Progress report: short term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton", EPA Grant Number: R831721.

14.
Hund-Rinke, K. and Simon, M. (2006), "Ecotoxic effect of photocatalytic active nanoparticles ($TiO_2$) on algae and daphnids", Environ. Sci. Pollut. Res., 13, 225-232. crossref(new window)

15.
Jeng, H.A. and Swanson, J. (2006), "Toxicity of metal oxide nanoparticles in mammalian cells", J Environ Sci Health, Part A: Environ. Sci. Eng., 41, 2699-2711. crossref(new window)

16.
Jiang, W., Mashayekhi, H. and Xing, B. (2009), "Bacterial toxicity comparison between nano- and micro-scaled oxide particles", Environ. Pollut., 157, 1619-1625. crossref(new window)

17.
Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernades, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. and Lean, J.R. (2008), "Nanomaterials in the environment: behavior, fate, bioavailability and effects", Environ. Toxicol. Chem., 27, 1825-1851. crossref(new window)

18.
Knox, J.P. (1995), "The extracellular-matrix in higher-plants 4. Developmentally- regulated proteoglycans and glycoproteins of the plant-cell surface", J. FASEB., 9, 1004-1012. crossref(new window)

19.
Lin, D.H., Tian, X.L., Wu, F.C. and Xing, B.S. (2010), "Fate and transport of engineered nanomaterials in the environment", J. Environ. Qual., 39, 1896-1908. crossref(new window)

20.
Lowry, O.H., Rosebrough, N.J., Farr, L.A. and Randall, R.J. (1951), "Protein measurement with the folin phenol reagent", J. Biol. Chem., 265-275.

21.
Manivasakan, P., Rajendran, V., Rauta, P.R., Sahu, B.B. and Panda, B.K. (2011), "Effect of mineral acids on the production of alumina nanopowder from raw bauxite", Powder Technol., 211, 77-84. crossref(new window)

22.
Marcone, G.P.S., Oliveira, A.C., Almeida, G., Umbuzeiro, G.A. and Jardim, W.F. (2012), "Ecotoxicity of $TiO_2$ to Daphnia similis under irradiation", J. Hazard. Mater., 211-212, 436-442. crossref(new window)

23.
Mueller, N.C. and Nowack, B. (2008), "Exposure modeling of engineered nanoparticles in the environment", Environ. Sci. Technol., 42, 4447-4453. crossref(new window)

24.
Naskar, M.K., Chatterjee, M. and Lakshmi, N.S. (2002), "Sol-emulsiongel synthesis of hollow mullite microspheres", J. Mater. Sci., 37, 343-348. crossref(new window)

25.
Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A., Quigg, A., Santschi, P.H. and Sigg, L. (2008), "Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi", Ecotoxicology, 17, 372-386. crossref(new window)

26.
Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005), "Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles", Environ. Hlth. Perspect., 113, 823-839. crossref(new window)

27.
Organisation for Economic Cooperation and Development (1984), "Algal growth inhibition test OECD guidelines for testing of chemicals", 201, Paris, France.

28.
Saniger, J.M. (1995), "Al-O infrared vibrational frequencies of c-$A1_2O_3$", Mater. Lett., 22, 109-113. crossref(new window)

29.
Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. (2012), "Growth and physiological responses of maize (Zea mays L) to porous silica nanoparticles in soil", J. Nanopart. Res., 14, 1294. crossref(new window)

30.
Tarte, P. (1967), "Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of $AlO_4$ tetrahedra and $AlO_6$ octahedra Spectrochim", Spectrochimica Acta Part A: Molecular Spectroscopy, 23, 2127-2143. crossref(new window)

31.
Wang, W., Gu, B., Liang, L. and Hamilton, W. (2003), "Fabrication of near infrared photonic crystals using highly-mono dispersed sub micrometer $SiO_2$ spheres", J. Phys. Chem. B, 107, 12113-12117. crossref(new window)

32.
Xiong, D., Fang, T., Yu, L., Sima, X. and Zhu, W. (2011), "Effects of nano-scale $TiO_2$, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage", Sci. Total Environ., 409, 1444-1452. crossref(new window)

33.
Yee, N., Benning, L.G., Phoenix, V.R. and Ferris, F.G. (2004), "Characterization of metal-Cyanobacteria sorption reactions: a combined Macroscopic and infrared spectroscopic inves- tigation", Environ. Sci. Technol., 38, 775-782. crossref(new window)

34.
Yuvakkumar, R., Elango, V., Rajendran, V. and Kannan, N. (2012), "High-purity nano silica powder from rice husk using a simple chemical method", J Exp Nanosci, ID: 656709.

35.
Zhang, W.X. (2003), "Nanoscale iron particles for environmental remediation: an overview", J. Nanopart. Res., 5, 323-332. crossref(new window)