Advanced SearchSearch Tips
Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Advances in nano research
  • Volume 4, Issue 1,  2016, pp.1-14
  • Publisher : Techno-Press
  • DOI : 10.12989/anr.2016.4.1.001
 Title & Authors
Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles
Kurtinaitiene, Marija; Mazeika, Kestutis; Ramanavicius, Simonas; Pakstas, Vidas; Jagminas, Arunas;
Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, , or maghemite, , core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as and , differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, , Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of . Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.
manganese ferrite;nanoparticles;hydrothermal synthesis;phase purity;magnetic properties;
 Cited by
Ahn, T., Kim, J.H., Yang, H.M., Lee, J.W. and Kim, J.D. (2012), "Formation pathways of magnetite nanoparticles by coprecipitation method", J. Phys. Chem. C, 116, 6069-6076. crossref(new window)

Banerjee, S.S. and Chen, D.H. (2008), "Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery", Nanotechnology, 19, 505104. crossref(new window)

Bao, N., Shen, L., An, W., Padhan, P., Turner, C. and Gupta, A. (2009), "Formation mechanism and shape control of monodisperse magnetic $CoFe_2O_4$ nanocrystals", Chem. Mater., 21(14), 3458-3468. crossref(new window)

Brabers, V.A.M. (1995), Progress in spinel ferrite research, Handbook of Magnetic Materials, Ed. Buschow, K.H.J., Vol. 8, Chapter 3, Elsevier, NY, USA.

Byrappa, K., Ohara, S. and Adschiri, T. (2008), "Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications", Adv. Drug, Delivery Rev., 126, 273-279.

Coker, V.S., Telling, N.D., van der Laan, G., Pattrick, R.A.D., Pearce, C.I., Arenholz, E., Tuna, F., Winpenny, R.E.P. and Lloyd, J.R. (2009), "Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties", ACS Nano, 3(7), 1922-1928. crossref(new window)

Corchero, J. and Villaverde, A. (2009), "Biomedical applications of distally controlled magnetic nanoparticles", Trend. Biotechnol., 27(8), 468-476. crossref(new window)

Guinier, A., Lorrain, P. and Lorrain, D.S.M. (1963), X-Ray Diffraction : In Crystals, Imperfect Crystals and Amorphous Bodies, Freeman, W.H. & Co., San Francisco, CA, USA.

Gupta, A.K. and Gupta, M. (2005), "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", Biomater., 26, 3995-4021. crossref(new window)

Hu, Y., Xie, W., Tang, Y.W. and Wan, C.H. (2007), "Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells", J. Controll. Relase., 118, 7-17. crossref(new window)

Hubert-Pfalzgraf, L.G. (1998), "Some aspects of homo and heterometallic alkoxides based on functional alcohols", Coordinat. Chem. Rev., 178-180, 967-997. crossref(new window)

Janghorban, K. and Shokrollahi, H. (2007), "Influence of $V_2O_5$ addition on the grain growth and magnetic properties of Mn-Zn high permeability ferrites", J. Magn. Magn. Mater., 308, 238-242. crossref(new window)

Jiang, J.Z., Wynn, S., Morup, S., Okada, T. and Berry, F.J. (1999), "Magnetic structure evolution in mechanically milled nanostructured $ZnFe_2O_4$ particles", Nanostruct. Mater., 12, 737-74. crossref(new window)

Jones, D.H. and Srivastava, K.K.P. (1986), "Many-state relaxation model for the Mossbauer spectra of superparamagnets", Phys. Rev. B, 34, 7542-7548. crossref(new window)

Kumar, C.S.S.R. and Mohammad, F. (2011), "Magnetic nanoparticles for hyperthermia-based therapy and controlled drug delivery", Adv. Drug. Delivery Rev., 6 3, 789-808. crossref(new window)

Latrigue, L., Wilhelm, C., Servais, J., Factor, R., Dencousse, A., Bacri, J.C., Luciani, N. and Gazeau, F. (2012), "Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake", ACS Nano., 6, 2665-2678. crossref(new window)

Laokul, P., Amornkitbamrung, V., Seraphin, S. and Maensiri, S. (2011), "Characterization of magnetic properties of nanocrystalline $CuFe_2O_4$, $NiFe_2O_4$, $ZnFe_2O_4$ powders prepared by the Aloe vera extract solution", Curr.Appl. Phys., 11(1), 101-108. crossref(new window)

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V. and Muller, R.N. (2008), "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications", Chem. Rev., 108, 2064-2110. crossref(new window)

Lee, D.K., Kim, Y.H., Kang, Y.S. and Stroeve, P. (2005), "Preparation of a Vast $CoFe_2O_4$ Magnetic Monolayer by Langmuir-Blodgett Technique", J. Phys. Chem. B, 109(31), 14939-14944. crossref(new window)

Liu, B.H., Ding, J., Dong, Z.L., Boothroyd, C.B., Yin, J.H. and Yi, J.B. (2006), "Microstructural evolution and its influence on the magnetic properties of $CoFe_2O_4$ powders during mechanical milling", Phys. Rev. B, 74, 184427. crossref(new window)

Liu, Y., Zhang, Y., Feng, J.D., Li, C.F., Shi, J. and Xiong, R. (2009), "Dependence of magnetic properties on crystallite size of $CoFe_2O_4$ nanoparticles synthesised by auto-combustion method", J. Exp. Nanosci., 4, 159-168. crossref(new window)

Lu, A.H., Salabas, E.L. and Schuth, F. (2007), "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application", Angew. Chem. Int. Ed., 46, 1222-1244. crossref(new window)

Mahmoudi, M., Sant, S., Wang, B., Laurent, S. and Sen, T. (2011), "Superparamagnetic iron oxide nanoparticles (SPION's): Development, surface modification and application in chemotherapy", Adv. Drug Delivery Rev., 63, 24-46. crossref(new window)

Naseri, M.G., Saion, E.B. and Kamali, A. (2012), "An overview on nanocrystalline $ZnFe_2O_4$, $MnFe_2O_4$, and $CoFe_2O_4$ synthesized by a thermal treatment method", ISRN Nanotechnol., ID 604241, doi:10.5402/2012/604241. crossref(new window)

Peddis, D., Cannas, C., Musinu, A. and Piccaluga, G. (2008), "Coexistence of superparmagnetism and spinglass like magnetic ordering phenomena in a Co$Fe_2O_4-SiO_2$ nanocomposite", J. Phys. Chem. C, 112(13), 5141-5147. crossref(new window)

Pereira, C., Pereira, A.M., Fernandes, C., Araujo, J.A., Freire, C. et al (2012), "Superparamagnetic Me$Fe_2O_4$ (M=Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route", Chem. Mater., 24, 1496-1504. crossref(new window)

Pramanik, N.C., Fujii, T., Nakanishi, M. and Takada, J. (2004), "Effect of $Co^{2+}$ ion on the magnetic properties of sol-gel cobalt ferrite thin films", J. Mater. Chem., 14, 3328-3332. crossref(new window)

Pratsinis, S.E. and Vemury, S. (1996), "Particle formation in gases-a review", Powder Technol., 88, 267-272. crossref(new window)

Salazar, J.S., Perez, L., de Abril, O., Phuoc, L.T., Ihiawakrim, D., Vazgues, M., Greneche, J.M., Begin-Colin, S. and Pourroy, G. (2011), "Magnetic Iron Oxide Nanoparticles in 10-40 nm Range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties", Chem. Mater. B, 23, 1379-1386. crossref(new window)

Shokrollahi, H. (2008), "Magnetic properties and densification of manganese-zinc soft ferrites ($Mn_{1-x}Zn_xFe_2O_4$) doped with low melting point oxides", J. Magn. Magn. Mater., 320, 463-474. crossref(new window)

Solano, E., Perez-Mirabet, L., Martinez-Julian, F., Guzman, R., Arbiol, J. et al. (2012), "Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of $MFe_2O_4$ spinel magnetic nanoparticles", J. Nanopart. Res., 14, 1034-1038. crossref(new window)

Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X. and Li, G. (2004), "Monodisperse $MFe_2O_4$ (M=Fe, Co, Mn) nanoparticles", J. Am. Chem. Soc., 126(1), 273-279. crossref(new window)

Thomas, M.F. and Johnson, C.E. (1986), "Mossbauer spectroscopy", Dickson D.P.E. and Berry F.J. Cambridge University Press, Cambridge.

Tourinho, F.A., Franck, R. and Massart, R. (1990), "Aqueous ferro fluids based on manganese and cobalt ferrites", J. Mater. Sci., 25, 3249-3254. crossref(new window)

Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H. and Yang, S. (2010), "Watersoluble super paramagnetic manganese ferrite nanoparticles for magnetic resonance imaging", Biomater., 31, 3667-3673. crossref(new window)

Zeng, H., RiCe, P.M., Wang, S.X. and Sun, S. (2004), "Monodisperse $MFe_2O_4$ (M=Fe,Co,Mn) nanoparticles", J. Am. Chem. Soc., 126, 11458-11459. crossref(new window)

Zheng, L., He, K., Xu, C.Y. and Shao, W.Z. (2008), "Synthesis and characterization of single crystalline $MnFe_2O_4$ nanorods via a surfactant-free hydrothermal route", J. Magn. Magn. Mater., 320(21), 2672-2675. crossref(new window)