JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Capabilities of 1D CUF-based models to analyse metallic/composite rotors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Capabilities of 1D CUF-based models to analyse metallic/composite rotors
Filippi, Matteo; Carrera, Erasmo;
 Abstract
The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.
 Keywords
composites;carrera unified formulation;finite element method;rotordynamics;
 Language
English
 Cited by
 References
1.
Banerjee, J. (2000), "Free vibration of centrifugally stiffened uniformand tapered beams using the dynamic stiffness method", J. Sound Vib., 233, 857-875. crossref(new window)

2.
Banerjee, J. (2001), "Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams", J. Sound Vib., 247, 97-115. crossref(new window)

3.
Banerjee, J. and Su, H. (2004), "Development of a dynamic stiffness matrix for free vibration analysis of spinning beams", Comput. Struct., 82, 2189-2197. crossref(new window)

4.
Banerjee, J., Su, H. and Jackson, D. (2006), "Free vibration of rotating tapered beams using the dynamic stiffness method", J. Sound Vib., 298, 1034-1054. crossref(new window)

5.
Bauer, H. (1980), "Vibration of a rotating uniform beam, part 1: Orientation in the axis of rotation", J. Sound Vib., 72, 177-189. crossref(new window)

6.
Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. crossref(new window)

7.
Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 215-296. crossref(new window)

8.
Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures, Classical and Advanced Theories, Wiley.

9.
Carrera, E., Cinefra, M., Petrolo, M. and Zappino, E. (2014a), Finite Element analysis of structures through Unified Formulation, Wiley.

10.
Carrera, E., Filippi, M. and Zappino, E. (2013a), "Analysis of rotor dynamic by one-dimensional variable kinematic theories", J. Eng. Gas Turb. Power, 135, 092501. crossref(new window)

11.
Carrera, E., Filippi, M. and Zappino, E. (2013b), "Free vibration analysis of rotating composite blades via carrera unified formulation", Compos. Struct., 106, 317-325. crossref(new window)

12.
Carrera, E. and Filippi, M. (2014b), "Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials", J. Eng. Gas Turb. Power, 136, 092501. crossref(new window)

13.
Carrera, E. and Filippi, M. (2015), "Vibration analysis of thin/thick, composites/metallic spinning cylindrical shells by refined beam models", J. Vib. Acoust., ASME, 137(3), 031020. crossref(new window)

14.
Chandiramani, N., Librescu, L. and Shete, C. (2002), "On the free-vibration of rotating composite beams using a higher-order shear formulation", Aerosp. Sci. Tech., 6, 545-561. crossref(new window)

15.
Chandiramani, N., Librescu, L. and Shete, C. (2003), "Vibration of higher-order-shearable pretwisted rotating composite blades", Int. J. Mech. Sci., 45, 2017-2041. crossref(new window)

16.
Chandra, R. and Chopra, I. (1992), "Experimental-theoretical investigation of the vibration characteristics of rotating composite box beams", J. Aircraf., 29, 657-664. crossref(new window)

17.
Chen, M. and Liao, Y. (1991), "Vibrations of pretwisted spinning beams under axial compressive loads with elastic constraints", J. Sound Vib., 147, 497-513. crossref(new window)

18.
Chen, Y., Zhao, H., Shen, Z., Grieger, I. and Kroplin, B.H. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. crossref(new window)

19.
Combescure, D. and Lazarus, A. (2008), "Refined finite element modelling for the vibration analysis of large rotating machines: application to the gas turbine modular helium reactor power conversion unit", J. Sound Vib., 318(4), 1262-1280. crossref(new window)

20.
Curti, G., Raffa, F. and Vatta, F. (1991), "The dynamic stiffness matrix method in the analysis of rotating systems", Tribol. Tran., 34, 81-85. crossref(new window)

21.
Curti, G., Raffa, F. and Vatta, F. (1992), "An analytical approach to the dynamics of rotating shafts", Meccanica, 27, 285-292. crossref(new window)

22.
Genta, G., Chen, F. and Tonoli, A. (2010), "Dynamics behavior of rotating bladed discs: a finite element formulation for the study of second and higher order harmonics", J. Sound Vib., 329, 5289-5306. crossref(new window)

23.
Genta, G. and Tonoli, A. (1996), "A harmonic finite element for the analysis of flexural, torsional and axial rotordynamics behavior of discs", J. Sound Vib., 196, 19-43. crossref(new window)

24.
Guo, D., Chu, F. and Zheng, Z. (2001), "The influence of rotation on vibration of a thick cylindrical shell", J. Sound Vib., 242, 487-505. crossref(new window)

25.
Guo, D., Zheng, Z. and Chu, F. (2002), "Vibration analysis of spinning cylindrical shells by finite element method", Int. J. Solid. Struct., 39, 725-739. crossref(new window)

26.
Hodges, D. and Rutkowski, M. (1981), "Free-vibration analysis of rotating beams by a variable-order finiteelement method", AIAA J., 19, 1459-1466. crossref(new window)

27.
Jang, G.H., Lee, S.H. and Jung, M.S. (2002), "Free vibration analysis of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft using the finite element method and substructure synthesis", J. Sound Vib., 251, 59-78. crossref(new window)

28.
Jung, S.N., Nagaraj, V. and Chopra, I. (1999), "Assessment of composite rotor blade modeling techniques", J. Am. Helicop. Soc., 44, 188-205. crossref(new window)

29.
Jung, S.N., Nagaraj, V. and Chopra, I. (2001), "Refined structural dynamics model for composite rotor blades", AIAA J., 39, 339-348 crossref(new window)

30.
Lam, K.Y. and Loy, C.T. (1995), "Free vibrations of a rotating multilayered cylindrical shell", Int. J. Solid. Struct., 32, 647-663. crossref(new window)

31.
Mei, C. (2008), "Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam", Comput. Struct., 86, 1280-1284. crossref(new window)

32.
Na, S., Yoon, H. and Librescu, L. (2006), "Effect of taper ratio on vibration and stability of a composite thin-walled spinning shaft", Thin Wall. Struct., 44, 362-371. crossref(new window)

33.
Ozge, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670. crossref(new window)

34.
Ramezani, S. and Ahmadian, M. (2009), "Free vibration analysis of rotating laminated cylindrical shells under different boundary conditions using a combination of the layer-wise theory and wave propagation approach", Tran. B: Mech. Eng., 16, 168-176.

35.
Rao, S. and Gupta, R. (2001), "Finite element vibration analysis of rotating Timoshenko beams", J. Sound Vib., 242, 103-124. crossref(new window)

36.
Saito, T. and Endo, M. (1985), "Vibration of finite length rotating cylindrical shells", J. Sound Vib., 107, 17-28.

37.
Song, O. and Librescu, L. (1997a), "Anisotropy and structural coupling on vibration and instability of spinning thin-walled beams", J. Sound Vib., 204, 477-494. crossref(new window)

38.
Song, O. and Librescu, L. (1997b), "Structural modeling and free vibration analysis of rotating composite thin-walled beams", J. Am. Helicop. Soc., 42, 358-369. crossref(new window)

39.
Song, O., Librescu, L. and Jeong, N.H. (2000), "Vibration and stability of prestwisted spinning thin-walled composite beams featuring bending-bending elastic coupling", J. Sound Vib., 237, 513-533. crossref(new window)

40.
Yeo, H., Truong, K.V. and Ormiston, R.A. (2010), "Assessment of 1-D Versus 3-D Methods for Modeling Rotor Blade Structural Dynamics", 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, April.

41.
Yoo, H.H., Lee, S.H. and Shin, S.H. (2005), "Flapwise bending vibration analysis of rotating multilayered composite beams", J. Sound Vib., 286, 745-761. crossref(new window)