Advanced SearchSearch Tips
Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites
Klaerner, Matthias; Wuehrl, Mario; Kroll, Lothar; Marburg, Steffen;
Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.
damping;thermoplastic composites;FEA simulation;anisotropy;
 Cited by
FEA-based methods for optimising structure-borne sound radiation, Mechanical Systems and Signal Processing, 2017, 89, 37  crossref(new windwow)
Adams, R.D. and Bacon, D.G.C. (1973), "Effect of fibre orientation and laminate geometry on the dynamic properties of cfrp", J. Compos. Mater., 7, 402-428. crossref(new window)

Adams, R.D. and Maheri, M.R. (1994), "Dynamic flexural properties of anisotropic fibrous composite beams", Compos. Sci. Tech., 50(4), 497-514. crossref(new window)

Adams, R.D. and Maheri, M.R. (2003), "Damping in advanced polymer-matrix composites", J. Alloy. Compound., 355(1-2), 126-130. crossref(new window)

Adams, R.D. and Singh, M.M. (1996), "The dynamic properties of fibre-reinforced polymers exposed to hot, wet conditions", Compos. Sci. Tech., 56(8), 977-997. crossref(new window)

Berthelot, J.M. (2006), "Damping analysis of laminated beams and plates using the ritz method", Compos. Struct., 74(2), 186-201, 2006. crossref(new window)

Billups, E.K. and Cavalli, M.N. (2008), "2d damping predictions of fiber composite plates: Layup effects", Compos. Sci. Tech., 68(3-4), 727-733. crossref(new window)

Chandra, R., Singh, S.P. and Gupta, K. (1999), "Damping studies in fiber-reinforced composites - a review", Compos. Struct., 46(1), 41-51. crossref(new window)

Dresig, H. and HolzweiBig, F. (2010), Dynamics of Machinery:Theory and Applications, Springer Science & Business Media, Berlin Heidelberg, Germany.

El Mahi, A., Assarar, M., Sefrani, Y. and Berthelot, J.M. (2008), "Damping analysis of orthotropic composite materials and laminates", Compos. Part B: Eng., 39(7-8), 1069-1076. crossref(new window)

Fritze, D. and Marburg, S. and Hardtke, H.J. (2009), "Estimation of radiated sound power: a case study on common approximation methods", Acta Acustica United with Acustica, 95, 833-842 crossref(new window)

Hazrati Niyari, A. (2013), "Nonlinear finite element modelling investigation of flexural damping behavior of triple core composite sandwich panels", Mater. Des., 46, 842-848. crossref(new window)

Kaliske, M. and Rothert, H. (1995), "Damping characterization of unidirectional fibre reinforced polymer composites", Compos. Eng., 5(5), 551-567. crossref(new window)

Kishi, H., Kuwata M., Matsuda, S., Asami, T. and Murakami, A. (2004), "Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites", Compos. Sci. Tech., 64(16), 2517-2523. crossref(new window)

Klaerner, M., Marburg, S. and Kroll, L. (2013), "Simulative measures for structure borne sound radiation of composites", Proceedings of Meetings on Acoustics - ICA 2013, Montreal.

Li, J. and Narita, Y. (2013), "Analysis and optimal design for the damping property of laminated viscoelastic plates under general edge conditions", Compos. Part B: Eng., 45(1), 972-980. crossref(new window)

Li, J. and Narita, Y. (2014), "The effect of aspect ratios and edge conditions on the optimal damping design of thin soft core sandwich plates and beams", J. Vib. Control, 20(2), 266-279. crossref(new window)

Lin, D.X., NI, R.G. and Adams, R.D. (1984), "Prediction and measurement of the vibrational damping parameters of carbon and glass fibre-reinforced plastics plates", J. Compos. Mater., 18(2), 132-152. crossref(new window)

Magnus, K., Popp, K. and Sextro, W. (1995), Schwingungen : Physikalische Grundlagen und mathematische Behandlung von Schwingungen, Springer-Verlag, Berlin Heidelberg, New York, Germany/USA.

Maheri, M.R. (2011), "The effect of layup and boundary conditions on the modal damping of FRP composite panels", J. Compos. Mater., 45(13), 1411-1422. crossref(new window)

Maheri, M.R. and Adams, R.D. (1995), "Finite-element prediction of modal response of damped layered composite panels", Compos. Sci. Tech., 55(1), 13-23. crossref(new window)

Maheri, M.R. and Adams, R.D. (2003), "Modal vibration damping of anisotropic frp laminates using the Rayleigh-Ritz energy mininization sceme", J. Sound Vib., 259(1), 17-29. crossref(new window)

Maheri, M.R., Adams, R.D. and Gaitonde, J.M. (1996), "The effect of temperature on the dynamic characteristics of heat-resistant thermoplastic composites", Compos. Sci. Tech., 56(12), 1425-1434. crossref(new window)

Maheri, M.R., Adams, R.D. and Hugon, J. (2008), "Vibration damping in sandwich panels", J. Mater. Sci., 43(20), 6604-6618. crossref(new window)

Mathworks Company (2013), MATLAB User Guide - System Identification Toolbox, USA

Nagasankar, P., Balasivanandha Prabu, S. and Velmurugan, R. (2014), "The effect of the strand diameter on the damping characteristics of fiber reinforced polymer matrix composites: Theoretical and experimental study", Int. J. Mech. Sci., 89(0), 279 - 288. crossref(new window)

Ni, R.G. and Adams, R.D. (1984), "The damping and dynamic moduli of symmetric laminated composite beams-theoretical and experimental results", J. Compos. Mater., 18(2), 104-121. crossref(new window)

Petrone, G., D' Alessandro, V., De Rosa, S. and Franco, F. (2014), "Damping evaluation on eco-friendly sandwich panels through reverberation time (RT60) measurements", J. Vib. Control, 1077546314522507.

Sargianis, J., Kim, H., Andres, E. and Suhr, J. (2013), "Sound and vibration damping characteristics in natural material based sandwich composites", Compos. Struct., 96, 538-544. crossref(new window)

Täger, O., Dannemann, M. and Hufenbach, W. (2015), "Analytical study of the structural-dynamics and sound radiation of anisotropic multilayered fibre-reinforced composites", J. Sound Vib., 342, 57-74. crossref(new window)

Täger, O., Kroll, L. and Hufenbach, W. (2004), "Vibro-acoustic design of composites", Kunststoffe Plast Europe, 94(11), 118-121.

Treviso, A., Van Genechten, B., Mundo, D. and Turnour M. (2015), "Damping in composite materials: Properties and models", Compos. Part B: Eng., 78, 144-152. crossref(new window)

Vescovini, R. and Bisagni, C. (2015), "A procedure for the evaluation of damping effects in composite laminated structures", Progress in Aerospace Sciences,

Yim, J.H., Cho, S.Y., Seo, Y.J. and Jang, B.Z. (2003), "A study on material damping of $0^{\circ}$ laminated composite sandwich cantilever beams with a viscoelastic layer", Compos. Struct., 60(4), 367-374. crossref(new window)