Estimation of learning gain in iterative learning control using neural networks

  • Published : 1996.10.01

Abstract

This paper presents an approach to estimation of learning gain in iterative learning control for discrete-time affine nonlinear systems. In iterative learning control, to determine learning gain satisfying the convergence condition, we have to know the system model. In the proposed method, the input-output equation of a system is identified by neural network refered to as Piecewise Linearly Trained Network (PLTN). Then from the input-output equation, the learning gain in iterative learning law is estimated. The validity of our method is demonstrated by simulations.