직류직전 모터를 이용한 Bang-Bang 전류제어 개발

The Development of Compensated Bang-Bang Current Controller for DC Series Wound Motor

김종건, 이만형, 윤갑석, 배종일

삼성기술공업 건기연구소(Tel: 0551-60-8279; Fax: 0551-60-8254)
부산대학교 전기기계공학과(Tel: 051-510-1456; Fax: 051-512-9835; E-mail: mahlee@164.125.9.3)
부경대학교 전기공학과(Tel: 051-620-1437)

Abstract In order to establish the robust control system design technique of series wound motor drive system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor drive system under improperly variable load. To get minimum time torque control. A compensated Bang-Bang current controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor be used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang a controller. Both nonlinear operating characteristics of Digital switching elements and Describing Function methods are used for the analysis and synthesis. Real time implementation of compensated Bang-Bang current is achieved. Concept design strategy of the controller and PWM waveform generation algorithms are presented in the paper.

Keywords 직류직전모터, Bang-Bang 제어, 최적제어, P.W.M 주파수, 준선형중복기, Real-Time Schedule, Limit Cycle

1. 서론

2. 본론
2.1 토크로크 제어와 직류직전 모터
본 장에서는 토크로크 제어를 통해 전압 제어에서의 문제점을 들고 그 해결책으로 전류제어에 대한 설명하였고, 전압 제어에서의 문제점은, 유한한 크기의 입력전원 커넥터는 펌프 및 모터 내 부하의 분산에 따른 변화, 전류에 따른 모터내부 인터럽스의 변화 때문에 나타난다. 이와 같은 문제를 해결하는 전류제어는 실제 부하를 포함한 모터시스템의 전기적 성능의 기계적 성능에 비하여 무시할 만큼 작기 때문에 가능하다. 그리고 중요한 것은 전류제어가 사용된 부하를 포함한 전류 모터 시스템 1차 미분방정식으로 표현되므로, 마이크로컴퓨터를 이용하여 실시간으로 전류제어 알고리즘을 실행할 수 있다는 것이다.

2.2 전압제어와 전류제어
그림 1은 2상에서 동작이 가능한 직류직전모터를 위한 효율적 전력 회로(chopper power circuit)이다. 여기서 P.W.M 출력기는 전압원이나 전류원 어느 것으로도 사용이 가능하다. 그리고 전압제어의 문제점은, 빠른 전압제어의 빠른 전류제어 시스템을 해석하는 경우, 전력 증감의 입력전압(커넥터 펌프 전압)은 일정한 값으로 계산되는 것이 보통이다. 그러나 전력 증감의 입력 전압은 커넥터 펌프로 되어 있으므로 기동시나 제동시 전력전압의 입력전압이 크게 변하지는 않지만, 이때의 전압보다는 출력의 속도나 토크로크에 직접 영향을 미친다. 따라서 입력전압의 변화를 계산하는 필요성이 생기는데, 이것은 모터 내부압력의 전도에 따라 변화한다. 전류에 따른 모터내부의 인터럽스 변화, 하드웨어 복잡성 및 소프트웨어에서의 부담이 이외에도 모터가 전압에 의하여 구동되는 경우, 제어시스템의 차수의 늘어짐으로 해석이 복잡하게 되어 실제 적용에 많은 힘을 들게 된다. 따라서 본 논의에서는 전류제어를 다루게 되었다.

Fig. 1. The power circuit for DC series wound motor driving

2.3 사이클을 이용한 보상된 Bang-Bang 전류제어
본 논의에서 보로된 Bang-Bang 전류제어의 구성은 그림 2와 같다. Bang-Bang 무위는 전류 변수에 모터전류의 평균값을 조정하기 위해 하드웨어 해석을 갖는 비교기를 제어자로 사용하여 도형적 ON/OFF로 동작을 수행시키며, 출력값이 정점되는 ON/OFF 제어기이다. 제어기의 동작과 제어기의 모델은 다음과 같다.

1) \(V_{in} > \text{SETPOINT} + \Delta \); \(\text{RESET} \) (ON/OFF = GND)
2) \(V_{in} < \text{SETPOINT} - \Delta \); \(\text{SET} \) (ON/OFF = V\text{.})
2.4 보상된 Bang-Bang 임펄스 제어의 R-L부하

일반적인 R-L부하에서의 보상된 Bang-Bang 제어기는 부하 전류상승성을 살펴보면, 스냅 샷의 전류범위(Ic)에 따른 스냅 샷의 부하전류(Iq)와 Unipolar PWM 증폭기(Kv)의 전압범위(Vd)를 그림 3에 보였다.

![그림 3 R-L 부하에서의 보상된 Bang-Bang 전류 제어](image)

여기서 \(a \)는 전류 폐환 이득이다. \(E_m \)는 오차 블랑 영역 (Error Dead Space)이며 Lockout Time은 PWM 증폭기의 최대 스위칭 주파수와 듀티 사이클을 조절하기 위해서 마이크로컴퓨터의 Foreground Loop에서 250 μsec의 인터럽트를 이용하여 처리되며 비선형 동작에 대한 보상과 함께 PWM ON Duty Length가 결정된다.

그림 3에서 보는 것과 같이 \(V_{ri} \)의 리플(Ripple)은 \(I_{ri} \)에서의 Limit Cycle 주파수에만 영향이 있으며 평균값인 \(I_{ri} \)에 영향이 없을 수 있다. 즉 하드웨어스를 이용한 Bang-Bang 전류 제어기는 입력의 전압범위에 무관한 전류제어기이다. 그리고 이 전류 제어기를 평균 출력 전류는 \(I_{ri} / a \)이므로 평균의 관점에서 준선형 증폭기(Quasi-Linear Amplifier)라고 할 수 있다.

Bang-Bang 전류 제어기와는 비슷한 시스템이며, 전류 출력은 입력의 전류 영향에 대하여 Eos방 정리되므로 이 시스템은 주파수 영향에서 허용하는 것은 적당하다. 이 제어기는 그림 4에서 보는 바와 같이, 제어기의 출력 전압이 전류의 면 일 때 주파수와 듀티가 적절하게 변화하는 Adaptive Current Control PWM제어기와는 달리, 저전력 소비형 PWM Chopper회로를 구현하기 위해 초점 주파수(250Hz)의 PWM 신호를 마이크로컴퓨터의 I/O Port에서 발생하며, 듀티 사이클은 ON/OFF제어기의 출력정보를 검출한 후 실시간 인터럽트 서브루틴에서 순차적으로 처리하여 모터의 평균 출력 전류가 전류 명령치와 같도록 한다. 그리고 이 시스템에서는 주파수 최적화 기법을 적용하기 위한 하드웨어적인 Lockout 기능이 ON/OFF 제어기의 출력정보의 생물형 시간(Tg)에는 채용 마이크로컴퓨터에서 소프트웨어적으로 설정된다.

![그림 4 Bang-Bang 제어 루프의 회로도](image)

2.5 보상된 Bang-Bang 전류제어기와 직류전원모터

본 장에서는 직류전원모터에 전달함수방정식을 적용하여 해석하였다. 부하를 포함하는 모터시스템의 직류전원모터 방정식을 도출하면 다음과 같다.

\[
\begin{align*}
\nu_a &= K_R \cdot \nu_r \\
\epsilon_a &= K_R \cdot i_a \cdot \omega \\
\nu_a &= R_m \cdot i_a + L_m \frac{di_a}{dt} + e_a \\
T_d &= K_L \cdot (i_a)^2 \\
T_d &= J \frac{d\omega}{dt} + B\omega + T_L
\end{align*}
\]

모터방정식(2.1d)에서 가변·비선형(variable-type nonlinearity) 특성을 나타내므로 전달함수 해석 기법을 적용하기 위해 제한된 작동범위 내에서 비선형 시스템을 선형화하여 제어기 설계를 한다. 따라서 작동범위 내에서 시스템 파라미터를 다시 정의하고 라플라스영역을 변환하면 다음과 같이 구성된다.

\[
\begin{align*}
\Delta\nu_a(S) &= K_R \cdot \Delta\nu_r(S) \\
\Delta\epsilon_a(S) &= R_m \cdot \Delta I_a(S) + L_m \cdot \Delta I_a(S) + \Delta E_a(S) \\
\Delta T_d(S) &= 2K_L \cdot \Delta I_a(S) \\
\Delta T_L(S) &= S\Delta\omega(S) + B\Delta\omega(S) + \Delta T_L(S)
\end{align*}
\]

위식으로부터 Bang-Bang 전류제어기를 사용한 시스템 특성선도는 그림 5와 같다. 모터입력전류는 \(R_m \)와 \(L_m \)으로 구성되며, 인터럽트 \(L_m \)는 모터내부 인터럽트와 외부 인터럽트를 모두 포함한 성분이다. 성상 시스템의 전류제어에서 \(L(S) \)가 입력일 때 직류전원로부터 시스템의 전달함수는 다음과 같이 된다.

\[
\begin{align*}
\Delta I_c(S) &= \left[\left(R_m + S L_m \right) \Delta I_a(S) + \Delta I_a(S) \right] \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \\
&= \<
우선 값을 가지기 때문에 이러한 조건에서 전달함수는 다음과 같이 간략화될 수 있다.

\[
\lim_{s \to 0} \frac{\Delta d(s)}{\Delta l(s)} = \frac{2K_w I_{e0}}{a \cdot (B+s)}
\]

따라서 간략화된 전류 제어기의 전달함수는 (5.62)에 보이거나, 간략화된 동기모터에 대한 해석은 소형 PWM 충격기에서의 순방향기어감(High Forward gain)에 기인하여 그의 응답은 제한화되어 보인다. 즉, 간략화된 전류 제어기에 모델은 R-L부하에서의 전류 제어 회로의 3.6과 같이 하지 못한 레지스트리브리터에서의 전류 제어기는 R-L부하에서의 값이 동일한 폰 비 비율로 높고 있다. 따라서 입력전압의 레지스트리브리터 및 레지스트리브리터에 무관하게 평균 전류의 제어가 가능하다. 그림 5.6에 서와 같이 전류를 입력, 속도를 출력으로 하는 경우 각기저저도 다른 시스템은 (3.26)의 분리자로 변형시킬 때 이 동기전달함수(2.33)가 시스템에서 어떤 동작성을 갖는지 예측할 수 있다.

\[
\Delta d_1(s) = \frac{2K_w I_{e0}}{a(s)(B+s)}
\]

2.6.2 프로그래머 구조 및 Control Algorithm

본 장은 보완된 Bang-Bang 제어 알고리즘의 개요 및 효과 기간으로 구성된 PWM 발생 알고리즘의 개요로 시현되었다.

스레드 구조는 그림 5.1과 같이 Foreground/Background 시스템을 적용하여 Foreground Part에 실시간 인터럽트 트림이 수행되고, Background Part에 표준 프로그램이 Non-scheduled 형식으로 수행되도록 하였다.

2.6.1 제어 알고리즘 개요

대형 급전송(Mass Rapid Transit, MRT)시스템에서의 제어 특성은 마련 및 무가와 같은 부하 변수의 변화가 있는 상황에서, 고속 운동 특성을 갖는 속도제어, 트로크 제어를 필요로 한다.

제어구간을 제어 변수의 크기에 따라 Bypass Mode와 Fine Mode의 2개구간으로 나누고 첫 번째 구간은 제어 변수의 오차가 큰 경우의 Coarse한 제어이며, 이 때의 제어방식은 다음과 같다.

1) Current Bypass Mode
2) Voltage Bypass Mode
3) Over-drive Mode

이 보강된 Bang-Bang 제어방식은 고속 주행시 최대 전압을

모터에 가하여 가속하고, 동정시에는 최량의 속도에 따라 최대 전류를 조절하여 속도와 토크가 동시에 제어되도록 한다. 정지 정상 주행시는 Fine한 전류 제어를 수행한다. 이 때의 전류 제어 모드는 다음과 같다.

1) Power(Acceleration) Control Mode
2) Regenerative/Brake Control Mode
3) Torque Boost Mode

2.6.2 PWM 신호 발생 알고리즘 개요

전류 제어기는 실시간 동작이 요구되는 시스템으로 이를 동작시키기 위한 소프트웨어로 실시간 운영체제를 갖추어야 한다. 이를 위해서 개발한 프로그램의 소프트웨어는 주로 R.T.S. (Real Time Scheduler)에 의한 250μsec 인터럽트 서비스루틴의 실행을 통해 동작한다.

인터럽트 발생시 각 기능구현 결과 16단계의 프로그램 모듈 (Program Module)이 마련되어 현재 시스템의 전류 상태 및 동작모드를 점검하여, 효과 전력회로의 Gate Drive용 Signal인 PWM파형의 ON/OFF Pulse 상태량 및 신호 출력을 수행하고, 실시간 인터럽트의 절차체계 즉, 16-Unit (250μsec*16=4ms: 250Hz PWM주파수)를 1주기(4msec)로 PWM 신호의 On Duty Length들 (1/16)의 안으로 가변하며, 동작 시스템의 상태검출에 따른 비선형 동작에 대한 보상과 함께 적절한 디지털 PWM 신호 파형을 적절히 발생시킨다. 그림 7에서는 PWM 신호의 순차적인 발생을 위한 Time Chart를 제시하였다.

![Time Chart](image-url)
3. 실험 및 고찰

본 논문에서는 제한된 제어 방법의 유 효성을 입증하기 위하여 다음과 같은 실험을 행하였다. 2장에서 언급한 보상된 Bang-Bang 전류 제어와 흡수 필터로 계획하였으며 속도와 토크의 검출을 위하여 Pickup Sensor와 Torque Transducer를 사용하였다. 실험에 사용된 모터는 6kW, 2700rpm-직류 직렬모터이며 실험이听课的 제어를 위하여 Z84C00 Single Board Computer를 제작하였다. 이 실험 결과에서 초기 구동 시 Soft Start과 보상된 Bang-Bang 제어가 낮고 후의 전류오차가 작으며 오버슈트가 없다는 것을 그림 8의 보상전류레벨록스에서 알 수 있으며, 고전압의 최적 값을 주어진 시스템 계통과 생물학 시간을 (Sample Time)을 고려하여 시험 xác정 (Trial and Error) 방식으로 정할 수 있다. 제시된 일반편은 오버슈트와 점장시간 등의 설계량을 만족하는 값을 적절하게 얻을 수 있으며, 마이크로 프로세서를 이용하여 쉽게 얻을 수 있으며, 마이크로 프로세서를 이용하여 쉽게 구현 할 수 있다.

4. 결론

본 논문에서는 직류진공시스템의 토크 제어에서 전류 제어 방식이 전압제어 방식에 비하여 보다 더 적절함을 보였다. 이와 같은 결과는 전류원으로 직류 직렬 모터를 구동하기 위하여 PWM 증폭기 입력 전원의 변동, 모터 내부 퍼뮤턴트의 종합과 인터스트의 영향에 영향을 받지 않는 것이 그 중요한 요인 이었다. 그리고 이 실험에서 나타난 결과는 그림 (8-a)의 I와 L가 일치하지 않는 이유는 직류진공 모터에 충분한 부하를 가하지 않았기 때문에 모터의 진공특성가 매우 좋아서 모터가 급속하게 롱 주상태(저속도)에 도달하는 경우가 발생하여 모터의 역전력에 의해 전류가 감소함을 관찰할 수 있었다. 이 전류 제어기는 전압제어 필요한 전류 제한의 기능까지 검출하고 있으므로 전압, 전류 병렬 제어가 가능하며 하드웨어에서의 복잡성을 크게 줄이고도 간단한 회로로 구성하는 것이 특징이다. 그러나 이런 방법들은 시스템의 비정형성이 높아지고 규모가 커짐에 따라 시스템의 안정성 및 Limit Cycle의 결정에 대한 연구가 추후에 보완되어야 할 사항으로 보인다.

참고문헌

그림 8. 전류 영향을 띠어 테이를 때의 부하전류 동작특성

Fig. 8 The load current response characteristic when change current command.