Tracking Characteristics of the Complex-LMS algorithm for a Sweeping Frequency Sine-wave Signal

Abstract: The transient behavior of the complex-LMS adaptive filter is studied when the adaptive filter is operating on a fixed or sweeping complex frequency sine-wave signal. The first-order difference equation is derived for the mean weights and its closed form solution is obtained. The transient response is represented as a function of the eigenvalues and eigenvalues of input correlation matrix. The mean-square error of the algorithm is evaluated as well. An optimal convergence parameter and filter length can be determined for sweeping frequency sine-wave signals as a function of frequency change rate and signal and noise powers.

Keywords: complex-LMS algorithm, sweeping complex frequency

1. 서론

자동차의 속도 변화가 크지 않을 경우, 높은 번진 투명 소음 저감을 위하여 기준의 LMS 알고리즘을 사용하여 만족할 만한 효과를 얻을 수 있다. 그러나, 속도 변화가 커질 경우, 즉 급 가속을 하고 있는 상황에서는 만족할 만한 효과를 얻을 수 없으며, 이는 LMS 박신의 알고리즘 자체의 추정 성능에 기인한다. 본 연구에서는 기존의 LMS 알고리즘의 추정 성능, 특히 시변(Nonstationary) 환경에서의 추정 특성을 파악하고자 한다.

시변(Nonstationary) 환경은 크게 두 가지로 구분된다. 첫째, 시변이 시변에 없을 시변(Stationary) 입력이 주어졌을 때와 시변에 시변(Nonstationary) 입력이 주어졌을 때이다. 제2. Widrow는 백색 가정 입력 신호가 시변 시스템에 주어질 때, LMS 알고리즘의 이 시변 시스템을 모사하는 특성을 연구한 바 있다.[4] 또한, Neil J Berchad는 주파수가 변하는 sine 신호가 백색 잡음 중에 섞여 있을 때, LMS 알고리즘으로 구분되는 Adaptive Line Enhancer (ALE)의 신호 분석 특성을 연구하였다.[1] 본 논문은 앞선 연구와 관련 없이, 시변(Nonstationary) 입력이 시변 시스템에 가해질 때, LMS 알고리즘의 입력 신호에 대한 추정 특성을 다루었다. 특히, 주파수가 시변적으로 변화하는 조화 입력에 대한 입력 신호의 자가상관 평행(auto-correlation matrix) R_0(n)과 입력과 파라미터 층의 입력 신호의 상호상관 벡터(cross-correlation vector) R_1(n)으로 표현된다.

2. 입력 신호의 동적 모델링

일반적인 LMS 알고리즘의 오차 신호와 가중치 갱신식은 다음과 같다.[5]

\[W(n+1) = W(n) + \mu d(n) X(n) - X(n)^T R_0(n) Y(n) \]

\[e(n) = d(n) - X(n)^T W(n) \]

\[R_0(n) = E[X(n) X(n)^T] \]

\[E[l] : expectation \]

입력 신호 x(n) 을 주파수가 변하는 조화 입력이라고 할 때, 다음과 같은 복소 지수 함수로 나타낼 수 있다.[1]

\[x(n) = \sigma e^{j(\omega_0 n T + \phi_0 + \frac{\omega}{2} (n T)^2 + \phi)} + n_s(n T) \]

\[\sigma : 신호의 초기 주파수 \]

\[\phi_0 : 신호의 주파수 변환율 \]

\[\phi : 신호의 허당 위상 \]

\[T : 샘플링 시간 \]

\[n_s : 입력신호의 측정 잔차 \]
식 (2) 에서의 입력 신호의 자기상관 행렬 $R_n(n)$ 을 좀 더 의미 있는 형태로 표현하기 위해, 다음과 같은 벡터 $D(n)$ 을 정의하자.

$$ D(n)^T = \begin{bmatrix}
 e^{j\pi_1 T} e^{j\pi_2 T} \cdots e^{j\pi_M T} \\
 e^{j\pi_1 T} e^{j\pi_2 T} \cdots e^{j\pi_M T} \\
 \vdots \\
 e^{j\pi_1 T} e^{j\pi_2 T} \cdots e^{j\pi_M T}
\end{bmatrix} $$

(4)

식 (4) 와 같이 $D(n)$ 을 정의하면, $D(n)$ 은 $R_n(n)$ 의 고유 벡터가 됨을 알 수 있다.

식 (3) 과식 (4) 를 이용하여, 입력 신호의 자기상관 행렬 (auto-correlation matrix) 은 다음과 같다.

$$ R_n(n) = \sigma_n^2 T + \sigma_n^2 D(n) D(n)^H $$

(5)

여기서 T 는 conjugate transpose 로 나타내는다.

모사하고자 하는 플랜트 $P(z^{-1})$ 를 FIR 필터 형태로 표현 가능하다고 가정하고, 다음과 같이 정의 하면.

$$ P(z^{-1}) = \sum_{k=0}^{\infty} P_k z^{-k} $$

위와 같이 플랜트를 정의하면, 플랜트를 통과한 신호 $d(n)$ 은 다음과 같다.

$$ d(n) = \sigma_n^2 \sum_{k=0}^{\infty} P_k e^{-j\theta_0(n-k)} $$

입력 데이터 벡터 $X(n)$ 과 플랜트 출력 $d(n)$ 의 상호상관 행렬 (cross-correlation matrix) 은 다음과 같다.

$$ R_{dX}(n) = \sigma_n^2 \sigma_d^2 d(n) X(n)^T $$

여기서, $$
 a(n) = \sum_{k=0}^{\infty} P_k e^{-j\theta_0(n-k)}
$$

식 (5) 와식 (6) 을 합쳐 (2) 에 대입하면, 필터 계수들의 기계에 관한 차원 방정식은 다음과 같이 얻을 수 있다.

$$ E\{W(n+j)\} = \left[I - \mu \sigma_n^2 \sigma_d^2 \sigma_d^2 \sigma_n^2 \right] E\{W(n)\} $$

(7)

3. LMS 알고리즘의 평균 수렴 특성

기존 입력 신호의 측정 값을의 파워가 0 이 아닌 경우, 식 (7) 을 상수 계수의 차원 방정식 형태로 표현하기 위해, $M(n)$ 을 다음과 같이 정의도자하면.

$$ M(n) = I + \sigma_n^2 \sigma_d^2 D(n) D(n)^H $$

입력의 n 에 대하여 $M(n)$ 의 고유 벡터는 $D(n)$ 과 $(M-I)$ 개의 $D(n)$ 에 수치한 벡터임을 알 수 있으며, 그 고유값은 다음과 같다.

$$ \lambda_i = 1 + \sigma_n^2 \sigma_d^2 M $$

(8)

$$ \lambda_i = 1 + \sigma_n^2 \sigma_d^2 $$

이므로, $M(n)$ 은 Hermitian 이므로, 모든 n 에 대하여 (8) 과 같이 $M(n)$ 을 대각 행렬로 만드는 변환 $P(n)$ 이 존재한다.

$$ P(n) M(n) P(n)^{-1} = \lambda = diag(\lambda_1, \lambda_2, \ldots, \lambda_M) $$

(9)

여기서, $D(0)^T = \left[e^{j\pi_1 T} e^{j\pi_2 T} \cdots e^{j\pi_M T} \right]^T$

$$ v^n = diag(a^n, a^{2n}, \ldots, a^{Mn}) \quad a = \exp\{j\theta T\} $$

변환 $P(n)$은 $M(n)$ 의 고유 벡터들로 표현될 수 있으며, $P(n)$ 을 다음과 같이 표현할 수 있다.

$$ P(n)^H = \frac{1}{\sqrt{M}} \left[D(n), R_1(n), \ldots, R_{M-1}(n) \right] $$

여기서, $R_1(n), R_2(n), \ldots, R_{M-1}(n)$ 는 모든 n 에 대하여 $D(n)$ 에 수치하고 상호 수직적 벡터들이다. 그러므로, $R(n)$ 도 식 (8) 와 유사하게 표현된다.

$$ R(n)^T = \frac{R(n)}{v^n} \quad i = 1, 2, \ldots, M-1 $$

그러므로, 식 (10) 에서

$$ P(n) = P(0) (V^*)^{-1} $$

여기서, $P(n)^H = \frac{1}{\sqrt{M}} \left[D(n), R(0), \ldots, R_{M-1}(0) \right]$

식 (7) 의 형태를 상수 계수를 갖는 차원 방정식을 표현하기 위해, 다음과 같이 $E\{W(n)\}$ 을 $P(n)$ 을 통해 변환시킨 새로운 벡터 $Z(n)$ 을 정의한다.

$$ Z(n) = P(n) E\{W(n)\} $$

식 (7) 식을 $Z(n)$ 으로 표현하면, 다음과 같다.

$$ Z(n+1) = P(n+1) \left[I - \mu \sigma_n^2 \sigma_d^2 \sigma_d^2 \sigma_n^2 \right] E\{W(n)\} + \mu \sigma_d^2 \sigma_n^2 \sigma_d^2 \sigma_n^2 \langle X(n) X(n)^T \rangle $$

$$ = P(n+1)^H P(n) \left[1 - \mu \sigma_n^2 \sigma_d^2 \sigma_d^2 \sigma_n^2 \right] Z(n) $$

$$ + \mu \sigma_d^2 \sigma_n^2 \sigma_d^2 \sigma_n^2 \langle X(n), Z(n) \rangle $$

(12)

이 때, $P(0) = P_0$ 이고, $D(0) = D_0$ 라고 놓고서 위 식을 정리하면

$$ Z(n) = P_0 \left[P_0^{-1} \left[1 - \mu \sigma_n^2 \lambda \right] \right] Z(0) + \mu \sum_{k=0}^{\infty} C(k) P_0^k D_0 $$

(13)

$$ C(k) = \frac{\sigma_n^2 \sigma_d^2 \sigma_d^2 \sigma_n^2}{\sigma_n^2 \sigma_d^2 \sigma_d^2 \sigma_n^2} \sum_{m=0}^{M-1} \langle X(n) X(n)^T \rangle $$

3-1. 고정된 주파수의 선호한 경우

식 (3) 의 일반적인 경우를 생각해 보자, $P=1$ 인 고정된 주파수를 갖는 신호의 경우에 따라서 고려해 보자로 한다. 이 때, 식 (13)은 다음과 같이 표현된다.

$$ Z(n) = I - \mu \sigma_n^2 \lambda \langle Z(n), X(n) \rangle $$

(14)

원래의 좌표계로 역 변환시켜, 필터 계수의 기계지를 구하면, 식 (15) 와 같다.

$$ E\{W(n)\} = \left[I - \mu \sigma_n^2 \lambda \right] E\{W(0)\} + \mu \sum_{k=0}^{\infty} \sigma_d^2 \sigma_n^2 \left[I - (1 - \mu \sigma_n^2 \lambda) \right] $$

(15)

여기서, $S^T = \left[\sqrt{M} 0.0, \ldots, 0 \right]$

식 (15) 에서 볼 수 있듯이, 초기 조건이 0 일 경우, 모든 필터 계수들의 크기는 일정하고, 위상만이 변화하게 된다. 이 때
위상의 변화는 벡터 D_0의 위상의 변화에 주요한 영향을 받는 것을 알 수 있다. 펼치 경제에 있어서, 과거 입력의 영향은 펼치 길이에 비례하여 증가한다. 펼치 길이가 길어지면, 그만큼 과거의 입력도 상관관계가 충분하다면 현재의 펼치 경제에 영향을 미치게 된다. 주파수가 변화하지 않는 sine 입력에 대해서는, 현재나 과거의 모든 입력 정보들에 대한 상관관계가 시간에 따라서 변하지 않으므로, 오차를 줄이기 위한 펼치 계수의 설정은 펼치가 사용할 수 있는 모든 과거 입력들과 현재의 입력을 동일한 방법으로 사용하여 이어져 된다. 그러므로, 모든 펼치 계수들의 크기가 일정하게 된다. 이것은 3-2 절에서 일반적인 경우에 대해 다시 설명하기로 한다.

3-3. 모의 실험

유도된 식을 검증하기 위해서, (17) 식을 통하여 여러 경 우의 주파수 변화율에 대한 펼치 계수들의 기대치와 실제로 LMS 알고리즘을 수행한 후 얻은 결과를 비교하였다. 오의 실험에서, 펼치는 다음과 같이 정의하였다.

$$P(z^{-1}) = 1 + z^{-1} + 2z^{-2} + z^{-3} + 2z^{-4} + z^{-5} + z^{-6}$$

(AP) 길이 $M=20$, 주파수 변화율 $\omega = 1, 3, 5$로 하고, 5 초 동안 펼치를 변화한 후에 얻은 결과와 (15) 식을 계산한 결과는 Fig.1-3과 같다.

(a) (15) 식을 통해서 계산된 값

(b) 실제 알고리즘을 통해서 얻어진 값

Fig.1 $\omega = 5$ 일 때, LMS 알고리즘의 적용 계수

(a) (15) 식을 통해서 계산된 값

(b) 실제 알고리즘을 통해서 얻어진 값

Fig.2 $\omega = 3$ 일 때, LMS 알고리즘의 적용 계수

(a) (15) 식을 통해서 계산된 값

(b) 실제 알고리즘을 통해서 얻어진 값

Fig.3 $\omega = 1$ 일 때, LMS 알고리즘의 적용 계수

$$D(n) = \text{입력신호의 자기관함}

Q(k) = \sum_{n=0}^{\infty} e^{-\gamma T + \Delta T} D_{n-\Delta T} D_{n}\]

$$Q(k) = \sum_{n=0}^{\infty} e^{-\gamma T + \Delta T} D_{n-\Delta T} D_{n}\]

$$Q(k) = \sum_{n=0}^{\infty} e^{-\gamma T + \Delta T} D_{n-\Delta T} D_{n}\]

$$G = I - \mu^2 \frac{1}{\sigma_0^2} \frac{1}{D_0 D_0^T} \]

$$E(W(n)) = \text{입력신호의 자기관함}

1) $D(n)$: 입력신호의 자기관함

2) $\{1 - e^{\gamma T + \Delta T}/(1 - \mu^2 \sigma_0^2)\}$: 과도 응답 행렬

3) $e^{\gamma T + \Delta T} \sum_{n=0}^{\infty} e^{-\gamma T + \Delta T} (1 - \mu^2 \sigma_0^2) \]

: 크기인자 (scale factor)

4) $\{1 - e^{\gamma T + \Delta T}/(1 - \mu^2 \sigma_0^2)\}$: 처음 입력을 받은 것을 알 수 있다. 즉, $E[W(n)]$의 위상은 기초치 수와 선형적인 영향을 보이고, 계수들은 기초치에 있는 계수들의 크기가 앞쪽에 있는 계수들의 크기보다 작아 지는 경향을 보인다. 또한 계수들의 감소율은 주파수 변화율이 크면, 증가한다. 다시 말해, 주파수 변화율이 커질수록, 펼치의 움직임 크기의 작아 감소들이 더 많이 생기는 것이다. 이러한 펼치 내의 움직임은 다음과의 모의 실험을 통해서도 볼 수 있다.
Fig.1-3 에서 볼 수 있듯이, 수식적으로 구한 결과와 알고리즘 시행 후 얻은 결과가 잘 일치하는 것을 알 수 있다. 따라서 식(17) 이 필터 계수의 체계를 정확하게 표현한다고 볼 수 있다. 그림에서 완전하게 일치하지 않는 것은, 실제 알고리즘 수행에서는 측정 임의가 섞여 있기 때문이다. Fig.1-3 에서 특정 두 가지 현상을 볼 수 있다. 첫째로, 필터 계수의 위상이 이 가중치 수에 따라서 선행적인 경향을 보인다. 둘째로, 이 증가할수록, 각 주파수 필터의 끝부위에 있는 필터 계수들의 크기가 작아지므로, 점점 더 많은 끝부위 필터 계수들이 필터 출력에 상대적으로 적은 기여를 한다. 즉, 모양은 다음과 같은 형태를 갖게 되고, 주파수 변화율이 커질수록 I 은 작아지게 된다.

\[W(n) = \left[w_1, w_2, \ldots, w_M \right] \]
\[= \left[w_0, w_1, \ldots, w_M \right] + \left[w_0, w_1, \ldots, w_M \right] \]
\[= \left[w_1, w_2, \ldots, w_M \right] \]
\[\text{고기, } |w_i| > |w_i|, \quad 1 < i < M \]

4. 평균차수오차

4-1. 평균 차수 오차식의 유도

오차 신호를 출력 신호와 필터 출력 신호의 차로 정의하면, 평균 차수 오차는 (16) 식과 같다.

\[e(n) = d(n) - W(n)^T X(n) + n(nT) \]
\[E\left[e(n)^2\right] = E\left[(d(n) - W(n)^T X(n) + n(nT))^2\right] \]
\[= E\left[d(n) - W(n)^T X(n) + n(nT)\right]^2 + E\left[n(nT)^2\right] \]
\[\geq \sum_{i=1}^{M} \left| W_i \right|^2 + \sum_{i=1}^{M} \left| W_i \right|^2 \]
\[\geq \sum_{i=1}^{M} \left| W_i \right|^2 + \sum_{i=1}^{M} \left| W_i \right|^2 \]

식 (16)을 살펴보면, 평균 차수 오차는 유발하는 항은 두 가지로 나누어 볼 수 있다. 첫째 항은, 출력 측정 값을의 극위와 평균 필터 계수를 통한 입력 측정 값을의 극위의 차이이다. 두 번째 항은 플랫폼을 통한 신호의 수용을 추중할 때 발생한 오차에 의한 항이다. 이 항은 무시하기에 평균적 특성에 따라서 변하게 된다. 이 점은 3-2에서 언급했던 필터 계수들의 크기 특성에 의해, 필터 입력이 작아져도 주파수 변화율이 변하지 않으면, 크게 변하지 않을 것을 알 수 있다.

4-2. 도의 설명

다양한 필터 입력에 대한 자동 오차의 변화를 구해 보았다. 도의 설명 조건은 3-2 결과와 동일하다. 필터 입력을 M=50, 20, 5로 변화시켜면서, 오차의 변화를 살펴보면, Fig.3과 같다.

Fig.4 M=50, 20, 5 일 때의 자동 오차

Fig.4 에서 필터 입력이 50, 20, 5 일 경우 필터 입력에 상관없이, 비슷한 성능을 내는 것을 볼 수 있다. 따라서, 필터 입력이 높을수록, 높은 주파수 입력들이 전부 필터 출력에 기여를 끌지 못한다는 것을 알 수 있다. 그러나, 어느 정도 주파수 변화율이 커지면, 시설의 입력의 경우는 달리, 필터 입력을 높여서 오차를 줄일 수 없음을 알 수 있다.

5. 결론

주파수 변화는 입력에 대해서, 필터 계수들의 기대치와 평균 차수 오차식을 완전한 형태로 유도하였다. 유도된 식으로부터 다음과 같은 사실을 알 수 있다. 주파수 변화율이 증가할수록, LMS 알고리즘이 필터 내에서, 더 많은 끝부위의 적응 계수의 크기를 앞부의 적응 계수의 크기보다 상대적으로 적게 만 들어, 뒤쪽에 위치한 필터 계수들이 필터 출력에 영향을 미치지 못하게 한다. 이것은 주파수 변화율이 커지면서, 속도 입력과 현재 입력의 상관관계가 높아지게 되며, 오차율 줄이기 위해서는 속도의 입력보다는 현재와 현재에 가까운 입력에 더 큰 비중을 두어야 하기 때문이다. LMS 알고리즘은 실질적인 필터 입력을 조절함으로써 상관관계가 큰 현재와 현재에 가까운 입력의 입력의 값을 가중치하여 주파수 변화율에 대해 필터 입력의 증가는 큰 의미를 갖지 않는다.

6. 참고문헌