Evaluation of the Interference from the Digital Broadcasting Satellite Networks into the Analogue Networks

Gwang-Ja Jin, Se-Kyoung Park, Jae-Moung Kim
Satellite Communications System Department, ETRI-Radio Broadcasting Technology Laboratory
Tel.: (042) 860-4839, Fax: (042) 860-6403, E-mail: gijn@etri.re.kr

Abstract

The interference evaluation methods and criteria between the analogue TV/FM signals for BSS(Broadcasting Satellite Service) plans and the associated feeder link plans were established in WARC(World Administrative Radio Conference)-77 and 88. However, it should be applied the different interference evaluation methods and criteria of the digital TV signals from those of the analogue TV/FM signals. In this paper, the interference evaluation methods and criteria between the digital TV signals and the analogue TV/FM signals were analyzed. And also, the effects of the interference from the digital signals for Koreasat-1 into the analogue TV/FM signals for Japanese broadcasting satellite were evaluated. The amounts of EIRP reduction in the transmitting space stations were calculated to meet the interference criteria. The results showed that the digital BSS networks including Koreasat-1 would share the limited resources with the analogue BSS networks.

I. 서론

세계전자통신회의(WARC, World Administrative Radio Conference)-77과 88에서는 모든 국제전자통신협약ITU, International Telecommunications Union) 회원국들에게 방송서비스 제공을 위한 장자제도 및 주파수 자원을 공평하게 분배하기 위해서 BSS 계획 및 BSS feeder link 계획을 작성하였다. 계획 당시에는 실질적으로 적용할 수 있는 전송방식이 아날로그 형태의 FM 방식이기 때문에, 이 방식이 기본 변조방식으로 채택되었다.[3]

그러나 아날로그 신호에 비해 디지털 신호에 대한 성능의 우수성과 통신기술의 발전으로, 방송방송을 통해 디지털 TV 신호의 전송에 대한 수요가 증가하고 있다. 따라서 디지털 TV 신호와 아날로그 TV 신호간의 간섭평가 기법의 정립과 간섭 허용기준의 제정이 요구되고 있다.

디지털 TV 신호가 아날로그 TV 신호에 미치는 간섭평가 기법은 아날로그 TV 신호간 간섭평가 기법을 융용하여 결정할 수 있으며, WARC-77, 88 계획의 채널 특성과 아날로그 TV/FM 신호에 대한 간섭평가 기법은 아래에서 기술하였다.

우리나라를 포함하는 제 3 지역에 분배된 BSS 계획 및 관련 feeder link 계획의 채널주파수는 표 1과 같다. 아날로그 채널은 다른 적교 채널을 이용하여 추가 사용 기법을 적용하고 있으며, 채널의 압축 및 채널간 간섭은 각각 27 MHz, 19.18 MHz이고, 동일 채널은 사용하는 채널간 간섭은 38.36 MHz이다.

<table>
<thead>
<tr>
<th>채널 번호</th>
<th>할당주파수 (GHz)</th>
<th>채널 번호</th>
<th>할당주파수 (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.72748 / 17.32748</td>
<td>2</td>
<td>11.74666 / 17.34666</td>
</tr>
<tr>
<td>3</td>
<td>11.76584 / 17.36584</td>
<td>4</td>
<td>11.78302 / 17.38502</td>
</tr>
<tr>
<td>5</td>
<td>11.80420 / 17.40420</td>
<td>6</td>
<td>11.82338 / 17.42338</td>
</tr>
<tr>
<td>7</td>
<td>11.84256 / 17.44256</td>
<td>8</td>
<td>11.86174 / 17.46174</td>
</tr>
<tr>
<td>9</td>
<td>11.88092 / 17.48092</td>
<td>10</td>
<td>11.90010 / 17.50010</td>
</tr>
<tr>
<td>11</td>
<td>11.91928 / 17.51928</td>
<td>12</td>
<td>11.93846 / 17.53846</td>
</tr>
<tr>
<td>13</td>
<td>11.95764 / 17.55764</td>
<td>14</td>
<td>11.97682 / 17.57682</td>
</tr>
<tr>
<td>15</td>
<td>11.99600 / 17.59600</td>
<td>16</td>
<td>12.01518 / 17.61518</td>
</tr>
<tr>
<td>17</td>
<td>12.03436 / 17.63436</td>
<td>18</td>
<td>12.05354 / 17.65354</td>
</tr>
<tr>
<td>19</td>
<td>12.07272 / 17.67272</td>
<td>20</td>
<td>12.09190 / 17.69190</td>
</tr>
<tr>
<td>21</td>
<td>12.11108 / 17.71108</td>
<td>22</td>
<td>12.13026 / 17.73026</td>
</tr>
<tr>
<td>23</td>
<td>12.14944 / 17.74944</td>
<td>24</td>
<td>12.16862 / 17.76862</td>
</tr>
</tbody>
</table>

BSS 계획 및 관련 feeder link 계획에서 아날로그 TVFM 신호간 간섭에 대한 C/I 보호비(Protection Ratio of Carrier to Interference Power)는 각각 식(1.1)과 (1.2)에서 주어진다.

- BSS 계획 (WARC-77)
 \[C/I_{15} > 31 \text{dB} \] \[C/I_{15} > 15 \text{dB} \] \[C/I_{15} > 15 \text{dB} \] \[(1.1) \]

- BSS feeder link 계획 (WARC-88)
 \[C/I_{10} > 40 \text{dB} \] \[C/I_{10} > 21 \text{dB} \] \[C/I_{10} > 21 \text{dB} \] \[(1.2) \]

또한 BSS 계획 및 관련 feeder link 계획에서 각 채널
발 CI 및 CI 보호비를 고려한 채널에 대한 동기보호지수(EPM, Equivalent Protection Margin)은 식(2.1), (2.2)와 같이, 이때 보에는 CIY 합으로 정의된다.

- BSS 계획 (WARC-77)

 \[EPM = (CI_{\text{in}} - 31) \Theta (CI_{\text{in}} - 15) \Theta (CI_{\text{in}} - 15) > 0 \]
 (2.1)

- BSS feeder link 계획 (WARC-88)

 \[EPM = (CI_{\text{in}} - 40) \Theta (CI_{\text{in}} - 21) \Theta (CI_{\text{in}} - 21) > 0 \]
 (2.2)

WARC-97에서는 현재 유효중인 방송위성방송을 제외한 나머지 BSS 계획과 관련 feeder link 계획에 대한 EPM 기준을 다소 하향 조정하였다.

본 논문은 II장에서 아날로그 TV 신호가 간섭이 가해지지 않는 신호와 BSS 계획에 관련 feeder link 계획에 대한 EPM 기준을 다소 하향 조정한 것이다.

본 논문은 II장에서 아날로그 TV 신호가 간섭이 가해지지 않는 신호와 BSS 계획에 관련 feeder link 계획에 대한 EPM 기준을 다소 하향 조정한 것이다.

II. 디지털 TV 간섭신호에 대한 간섭평가 기법

회신신호가 아날로그 TV 신호이고, 간섭신호가 디지털 TV 신호일 경우, 간섭평가기준은 기존의 아날로그 신호에 대한 것을 이용하여 계산할 수 있다. 그림 1에서 본 논문의 각 채널 제한에 대한 CI 값은 원래의 아날로그 TV 신호에 대한 CI 값의 1/3로 하향 조정된 CI 허용치를 적용하여 계산한다. 그림 1, 2에서 본 논문의 CI 허용치를 적용하여 계산한다. 그림 1, 2에서 본 논문의 CI 허용치를 적용하여 계산한다. 그림 1, 2에서 본 논문의 CI 허용치를 적용하여 계산한다. 그림 1, 2에서 본 논문의 CI 허용치를 적용하여 계산한다.

그림 2. 원래의 아날로그 TV 신호의 CI 허용치를 적용하여 계산한 CI 허용치

그림 2. 원래의 아날로그 TV 신호의 CI 허용치를 적용하여 계산한 CI 허용치

그림 2. 원래의 아날로그 TV 신호의 CI 허용치를 적용하여 계산한 CI 허용치

그림 2. 원래의 아날로그 TV 신호의 CI 허용치를 적용하여 계산한 CI 허용치

여기서, \(B/W_{\text{in}} \), \(B/W_{\text{out}} \), \(B/W_{\text{in}} \)는 각각 회신신호와 간섭신호의 결합지역(\(7.82 \, \text{MHz} \))과 TV 신호의 결합지역(\(27 \, \text{MHz} \))의 식(3)과 (4)에서 계산된 간섭신호의 CI 허용치를 이용하여 계산한다.

\[CI_{\text{in}} = CI_{\text{in}} \times 10 \log \left(\frac{B/W_{\text{out}}}{B/W_{\text{in}}} \right) \]
(3)

\[CI_{\text{out}} = CI_{\text{in}} \times 10 \log \left(\frac{B/W_{\text{in}}}{B/W_{\text{out}}} \right) \]
(4)

II.2. 디지털 TV 신호 간섭에 대한 EPM 및 요구 EIRP 감소량 계산

디지털 TV 신호 간섭에 대한 간섭평가는 BSS 개편 및 관련 feeder link 계획에 있는 모든 채널을 고려한 EPM에서 디지털 신호로 대체하고자 하는 아날로그 TV 신호가 EPM을 계산한 후에, 디지털 TV 신호의 EPM을 추가하여 구한다. 즉, 디지털 TV 간섭신호에 대한 EPM 및 EIRP 감소량은 아래에서 기술한 (3) 각각 영역을 수행함으로써 계산할 수 있다. 이에 4 번째 단계에 정의된 각 분할 채널의 동일파열화를 방지하기 위해 요구되는 EIRP 감소량은 서로 결정되는 단일 보호비(Single Protection Criteria)가 수행 전의 152
단일 보호비에 비해 일정한 값 이상으로 성능을 열화 시켜서 안전되는 전파규칙(Radio Regulations)의 규정을 적용하여야 한다.

정제, 방송위성망(S)의 아날로그 TV 신호에 의한 인접채널 CI_d를 계산하여 WARC-77, 88 계약상의 EPM(즉, 기존 EPM)으로부터 새로운 EPM(즉, EPM')로 정의하여 다음 식 (4.1) 및 (4.2)를 통해 계산한다.

$$EPM' = -10 \log \left(10^{\frac{CI_d}{10}} - 10^{\frac{CI_{d, -27}}{10}} - 10^{\frac{CL_{d, -27}}{10}} \right) \quad (4.1)$$

- BSS feeder link 계획 (WARC-88)

$$EPM'' = -10 \log \left(10^{\frac{CI_d}{10}} - 10^{\frac{CI_{d, -27}}{10}} - 10^{\frac{CL_{d, -27}}{10}} \right) \quad (4.2)$$

둘째, 방송위성망(S)의 디지털 TV 신호에 의한 인접채널 CI_d를 임의의 II-1 채널에서 기술한 방법으로 식 (5)를 이용하여 계산한다.

$$CI_{d, \text{dmax}} = CI_{d, \text{dmin}} = -10 \log \left(\frac{7.82 \text{MHz}}{27 \text{MHz}} \right) \quad (5)$$

셋째, 방송위성망(S)의 디지털 TV 신호를 포함시킨 새로운 EPM를 EPM'라 하고 식 (6)을 이용하여 계산한다.

$$CI_{d, \text{dmax}} = CI_{d, \text{dmin}} = -10 \log \left(\frac{7.82 \text{MHz}}{27 \text{MHz}} \right) \quad (6)$$

넷째, 기존의 계획을 수정하고자 할 때 음수인 EPM'에서 (EPM' - 0.25) dB보다 더 성능을 열화시키는 안되고, 양수인 EPM'에서는 -0.25 dB보다 더 성능을 열화시키는 안되기 때문에, EPM'이 기존값 이상으로 더 낮아질 경우 간섭신호의 위험 송신 EIRP를 낮추어야 함을 알 것이다. 즉, min(0, EPM) - EPM' < 0.25 dB 이면, 위험 송신 EIRP의 감소량(ΔEIRP, dB)은 다음과 같이 구한다.

$$\Delta$EIRP = min(0, EPM) - EPM' = \left\{ \begin{array}{l}
0, \quad \text{EPM' > 0.25 dB}

\end{array} \right.$$

- BSS 계획 (WARC-77)

$$\Delta$EIRP = \left((\text{min}(0, EPM) - 0.25) \right) \quad (7.1)$$

- BSS feeder link 계획 (WARC-88)

$$\Delta$EIRP = \left((\text{min}(0, EPM) - 0.25) \right) \quad (7.2)$$

III. 무궁화 방송위성망에 의한 일본 방송

무궁화 방송위성망은 14/11GHz 대(Feeder link: 14.5-14.8 GHz, 해상도: 11.7-12.0 GHz)를 사용하고, 서비스 지역이 인접한 제 3 지역의 방송위성망은 11/17 GHz 주파수(표 1 참조)를 사용하므로, 무궁화 방송위성망의 feeder link가 인접 방송방문으로 주는 간섭은 없을 것이다.

표 2에 주의할 점은 같이, 우리나라와 지리적으로 인접한 방송 위성망은 일본, 중국, 북한, 러시아 방송 위성망이며, 이중에서 북한 및 러시아 방송 위성망은 우리나라 방송 채널로부터 멀리 온지 관계로 간섭의 영향이 거의 없다.

본 논문에서는 무궁화 방송위성망과 채널세트가 중첩되는 중국 및 일본 방송방송방문에서 채널유 무 궁화 위성망과 가장 가까운 위치에 있는 일본의 방송 위성망에 대해서 간섭 특성을 평가하였다.

<table>
<thead>
<tr>
<th>국가명</th>
<th>방송채널</th>
<th>채널</th>
<th>채널</th>
<th>채널</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국</td>
<td>116°E</td>
<td>좌측회 전파</td>
<td>2, 4, 6, 8, 10, 12</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>110°E</td>
<td>우측회 전파</td>
<td>1, 3, 5, 7, 9, 11, 13, 15</td>
<td></td>
</tr>
<tr>
<td>중국</td>
<td>92°E</td>
<td>좌측회 전파</td>
<td>3, 7, 11</td>
<td></td>
</tr>
<tr>
<td>북한</td>
<td>110°E</td>
<td>좌측회 전파</td>
<td>14, 16, 18, 20, 22</td>
<td></td>
</tr>
<tr>
<td>러시아</td>
<td>110°E</td>
<td>우측회 전파</td>
<td>19, 23, 25, 27, 31, 35, 39</td>
<td></td>
</tr>
</tbody>
</table>

무궁화 디지털 TV 신호에 의한 일본의 아날로그 TV 신호로의 간섭 평가를 위해 이용한 각 위성망의 전송채널은 표 3에 나타내었다.

표 3. 회망 및 간섭 방송위성망의 전송채널

<table>
<thead>
<tr>
<th>구분</th>
<th>위성</th>
<th>위성</th>
</tr>
</thead>
<tbody>
<tr>
<td>일본 방송위성망</td>
<td>J1100</td>
<td>KOR1100</td>
</tr>
<tr>
<td>채널</td>
<td>110°E</td>
<td>116°E</td>
</tr>
<tr>
<td>고위어상 채널</td>
<td>7</td>
<td>6.8</td>
</tr>
<tr>
<td>왼쪽 채널</td>
<td>우측 회전</td>
<td>좌측회 전파</td>
</tr>
<tr>
<td>중심주파수</td>
<td>11.84256 GHz</td>
<td>11.82338 GHz (6번)</td>
</tr>
<tr>
<td>30.71748 GHz (8번)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boresight 좌표</td>
<td>31.5°N/134.5°E</td>
<td>36.0°N/127.5°E</td>
</tr>
<tr>
<td>시험점 좌표</td>
<td>34.7°N/129.5°E (대마도)</td>
<td></td>
</tr>
<tr>
<td>우주국</td>
<td>total peak power</td>
<td>30.4 dBW (6번)</td>
</tr>
<tr>
<td>하우주국 송신전</td>
<td>33.8 dB</td>
<td>43.43 dB</td>
</tr>
<tr>
<td>지구국 송신전</td>
<td>38.43 dB</td>
<td>38.43 dB</td>
</tr>
</tbody>
</table>
| 최고 방송위성망이 간섭 방송방문으로 미치는 간섭에 의한 각 채널의 EPM 및 EIRP 감소량에 대한 분석 결과를 표 4에 나타내었다. 표 4에서의 값이 무궁화 방송위성망이 아날로그 TV 신호를 사용할 경우, 일본 방송방문의 7번 채널에서의 동일보호선타는 2.16 dB 이었으나, 디지털 TV 신호로 대체되었을 경우에는 그 값이 정상보다 크게 감소하였다.
-0.63 dB로 높아졌다. 이 값은 최대 허용기준인 -0.25 dB보다 낮아 일본 방송위성망의 성능을 기준보다 더 열악기억으로, 일본 방송위성망을 적절히 보호하기 위해 무공화 방송위성망의 위성 송신 EIRP를 0.58 dB 낮춰야 할 수 있다.

IV. 결론

WARC-77, 88의 BSS 계획 및 관련 feeder link 계획은 아날로그 TV/FM 신호간의 간섭평가 기법을 적용하였다.

제 1, 3 지역의 방송위성망의 경제적인 구축은 ITU에서는 현재 별도로 할당된 채널수(제 1, 3 지역의 경우 총 4개)를 총 10개 이상으로 확대하기 위한 기술적인 타당성을 연구하고 있으며, 디지털 방식의 일부 도입을 적극 검토중에 있다.

본 논문에서는 WARC-77, 88 계획 당시에 적용한 아날로그 TV 신호간 간섭평가 기법을 이용하여 디지털 TV 신호가 아날로그 TV/FM 신호에 미치는 간섭에 대한 평가과정을 분석하였으며, 은유중간 방송위성망에 따른 직접 간섭과 디지털 TV 신호를 전송하는 무공화 방송위성망이 일본 방송위성망에 미치는 간섭과, 간섭보상기 제고 EIRP 감소량을 분석하였다.

본 논문의 이러한 분석결과는 무공화 위성망과 같은 디지털 방송망이 영구로 방송위성망과의 주파수

<table>
<thead>
<tr>
<th>항목</th>
<th>WARS 방송위성망(BS-3)</th>
<th>간섭 방송위성망(KoreaSat-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>해당위성에서 terrestrial의 각도</td>
<td>1.019°</td>
<td>0.225°</td>
</tr>
<tr>
<td>해당위성에서 시간계의 각도</td>
<td>3.302°</td>
<td>1.060°</td>
</tr>
<tr>
<td>해당위성 통합편안 허용지역(Ga)</td>
<td>32.666 dB</td>
<td>43.010 dB</td>
</tr>
<tr>
<td>해당위성 교차편안 허용지역(Gc)</td>
<td>0.21 dB</td>
<td>7.02 dB</td>
</tr>
<tr>
<td>시간절에서의 두 위성간 각도</td>
<td>6.79°</td>
<td>16.99°</td>
</tr>
<tr>
<td>시간적서에서의 통합편안 허용지역(Ga)</td>
<td>38.43 dB</td>
<td>16.69 dB</td>
</tr>
<tr>
<td>시간적서에서의 교차편안 허용지역(Gc)</td>
<td>13.43 dB</td>
<td>8.43 dB</td>
</tr>
<tr>
<td>시간적서와 해당위성간 간섭지역송신</td>
<td>205.38 dB</td>
<td>205.33 dB</td>
</tr>
<tr>
<td>하인접해banana의 시간적서와 간섭위성간 간섭지역송신</td>
<td>205.35 dB</td>
<td></td>
</tr>
<tr>
<td>상인접해banana의 시간적서와 간섭위성간 간섭지역송신</td>
<td>51.45 dB</td>
<td></td>
</tr>
</tbody>
</table>

등고이득(G)

<table>
<thead>
<tr>
<th>항목</th>
<th>EIRP 감소량</th>
</tr>
</thead>
<tbody>
<tr>
<td>하인접 채널 C/I</td>
<td>35.16 dB</td>
</tr>
<tr>
<td>상인접 채널 C/I</td>
<td>35.09 dB</td>
</tr>
<tr>
<td>중 채널 C/I</td>
<td>32.11 dB</td>
</tr>
<tr>
<td>EPM</td>
<td>4.18 dB</td>
</tr>
<tr>
<td>EPM</td>
<td>-0.63 dB</td>
</tr>
<tr>
<td>EIRP 감소량</td>
<td>0.58 dB</td>
</tr>
</tbody>
</table>

(주) 등고이득(equivalent gain, G)은 편파에 따른 위성의 송신안테나 및 지구국의 수신안테나 이득을 고려한 이득을 의미한다.

- 송, 수신 안테나가 동일편파 사용 : $G = G_{ap}G_{p} + G_{a}G_{p}$
- 송, 수신 안테나가 동일편파 사용 : $G = G_{ap}G_{p} + G_{a}G_{p}$

참고문헌

[2] Appendix 30/A30A to Radio Regulations, “Provisions and Associated Plans for the Feeder Links for the Broadcasting Satellite Service (11.7-12.5 GHz in Region 1, 12.2-12.7 GHz in Region 2 and 11.7-12.2 GHz in Region 3) in the Frequency Bands 14.5-14.8 GHz and 17.3-18.1 GHz in Region 1, 3, and 17.3-17.8 GHz in Region 2”, ITU, 1988 and 1997.

